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First Test

March 2017

Scale. 90–100 A. 75–89 B. 60–74 C. Median 90.

Problem 1. [30] Essay.
Select one of the three topics A, B, and C. Please think

about these topics and make an outline before you begin
writing. You will be graded on how well you present your
ideas as well as your ideas themselves. Each essay should be
relatively short, one to three written pages. There should
be no fluff in your essays. Make your essays well-structured
and your points as clearly as you can.

Topic A. We’ve discussed mathematics of Egypt, Baby-
lonia, and Greece. Briefly summarize their transmission be-
tween cultures. Identify mathematics that may have been
transmitted from one culture to one of the others. Explain
why you think it may have been transmitted.

There seems to be no evidence of transmission between
Egyptians and Babylonians; their number systems and com-
putational methods were different and some of their knowl-
edge of geometry was different. On the other hand, the
Greeks learned much from both of the earlier cultures. For
instance, Greeks used both unit fractions from the Egyptians
and sexagesimal numbers from the Babylonians. There are
several stories about early Greek mathematicians visiting
both Egypt and Babylonia and learning mathematics there.

Topic B. Famous geometry problems. Select one
of the following three famous problems and write about
it. State the problem clearly and completely. Explain why
the problem was considered important by Greek mathemati-
cians. Describe one or two attempts to solve the problem
by Greek mathematicians. Explain why the attempts you
describe were not considered satisfactory. Explain how, if
at all, those attempts led to further investigations in math-
ematics.

B(i). Duplication of the cube (the Delian problem).
B(ii). Angle trisection.
B(iii). Quadrature of the circle

Here are some things you might say in each of the essays.
Not everything listed needs be said in an essay, and you may
have thought of other important points.

i. Duplication of the cube. This problem, also known
as the Delian problem, was to construct a cube of twice the
volume of a given cube. (The story goes that to staunch the
plague at Athens, the oracle of Apollo at Delos required that
the cubic altar be doubled.) Ideally, the construction should
be made only using the compass and straightedge. Of course,
we would say the problem is to construct a line segment the

cube root of two times as long as a given segment. The
analogous problem of doubling a square is easy—just make
a square on the diagonal of the given square. It wasn’t until
modern times that it was proved that the Delian problem is
unsolvable with straightedge and compass alone.

Hippocrates of Chios reduced the problem to finding two
mean proportionals, that is, given a and b, find x and y so
that a : x = x : y = y : b, for when a = 1 and b = 2, then x
is the cube root of two. This, of course, was not a solution
since there was no known way at that time of finding two
mean proportionals, and, furthermore the theory of ratios
would not be satisfactorily developed until Eudoxus. Still,
it was an insight into the problem that was helpful to later
mathematicians.

Archytas found a three-dimensional solution depending on
intersecting a cone, a cylinder, and a torus, but their con-
structions go beyond the tools of straightedge and compass.

Menaechmus found other solutions depending on inter-
secting parabolas and hyperbolas, curves which he invented
for the purpose, whose construction also depended on more
than straightedge and compass. These conic sections became
favorite curves of study ever since. Also, Menaechumus’ sug-
gestion of coordinates might have been important if it had
been developed, but unfortunately it was not developed until
Fermat and Descartes in the 17th century.

Archimedes had another solution of the Delian problem
which also depended on intersecting a parabola and a hy-
perbola. Indeed, Archimedes used conic sections to solve
the general cubic equation, not just for finding cube roots.

One can say that the quest to double the cube encouraged
the study of ratios and proportions and of solids of revolu-
tion, led to the invention of conic sections, could have led to
coordinate geometry, and suggested solutions to the general
cubic equation.

ii. Angle trisection. The problem of angle trisection
was to divide any given angle into three equal parts by means
of the classical tools of geometry, the straightedge and com-
pass. Angle bisection is easy, and division of a line segment
into any number of equal parts is easy, but it wasn’t until
recent times that it was shown that it is impossible to trisect
any given angle with straightedge and compass alone. It is
likely that one of the sources of this problem was the goal
to construct regular polygons, in particular, those where the
number of sides is divisible by nine.

Hippias described a curve he called a trisectrix, which he
used to trisect angles. It is the locus of the intersection of a
uniformly moving line and a uniformly rotating ray. It allows
the interconversion of angle measurement and distance, and,
therefore, may be used to divide an angle into any number
of equal parts (since a line segment can be divided into any
number of equal parts). It was not considered a satisfactory
solution since the generation of this curve depends on more
than a straightedge and compass.
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Archimedes spiral is also generated by a moving point,
this time, one which moves uniformly alone a ray while the
ray rotates uniformly. Since it can also be used to convert
between angle measurement and distance, it can also be used
to solve the trisection problem. It, of course, suffered from
the same fault at Hippias’ solution.

Other solutions due to Archimedes, Apolonius, and Pap-
pus used only the straightedge and compass. Unfortunately,
the straightedge was not used to only to draw lines between
pairs of points, but was fitted between two given curves so
that it passed through a given point. Hence, this solution
was not justified by Euclid’s axioms of geometry and was
not considered satisfactory.

The quest for trisecting an angle lead to the invention of
curves based on moving lines. If motion had been analyzed
to the same degree as static geometry had been, the Greeks
might have developed differential calculus, but it was not
considered a proper field of study by most mathematicians
of the time.

iii. Quadrature of the circle. This problem was to find
a square equal to a given circle, that is, given the diameter
of a circle, find the side of a square whose area is the same
as the area of the circle. We would say the side of the square
is the square root of pi times half of the diameter, and so
the solution is related to the value of π. The Egyptians had
an approximation to the answer, namely, take the side of
the square to be 8

9 of the diameter. The Babylonians also
had approximations of the area of a circle. Approximations
are nice, but the problem is to construct exactly the side
of a square, and to do it only using the classical tools of
geometry, the straightedge and compass. Only in recent
times has it been shown that those tools are insufficient for
the construction.

Hippocrates knew that circles are in the same ratios as
squares on their diameters, and that similar segments of cir-
cles are in the same ratios as the squares on their bases. Al-
though he used these statements, it is doubtful that he could
prove them as the theory of ratios and proportions would
not be established and the method of exhaustion would not
be developed until later by Eudoxus. Using these state-
ments, Hippocrates could find quadratures of certain lunes
by straightedge and compass alone. This gave hope that
circles themselves could be squared.

Dinostratus showed that Hippias’ trisectrix curve could be
used for circle squaring as well as trisecting angles, but as the
trisectrix depends on more than straightedge and compass
for its construction, Dinostratus’ solution was not considered
satisfactory.

After Eudoxus finally proved that circles are in the same
ratios as squares on their diameters using what we call the
method of exhaustion, the area of circles could be approxi-
mated arbitrarily closely, but not exactly. Archimedes later
carried out this approximation to give an approximation of

22
7 for π and closer approximations as well. These may be

practically useful, but, of course, could not be considered to
be solutions to the problem.

Archimedes also showed that his spiral could be used to
square the circle, but as it depended on motion for its gen-
eration (as did Hippias’ trisectrix), this was not considered
to be a proper solution.

The quest for squaring the circle lead to the actual quadra-
ture of some curved figures (Hippias’ lunes), spurred the de-
velopment of the theory of ratios and proportions, lead to
the method of exhaustion, and brought us closer approxi-
mations to π than had been known before.

Topic C. Babylonian arithmetic. Describe the numer-
als that Babylonians used, how they represented fractions,
and their algorithms for addition, subtraction, multiplica-
tion, and division. Explain at least one method they used
for finding square roots.

Summary of points to make in your essay. Numerals were
written with one symbol for 1 and another for 10. A place
value system in base sixty was used so that six of the symbols
for 10 was equal to one of the symbols for 1 in the next
column to the left. Blanks were used for 0. For example, the
number 500, which is 8 times 60 plus 20, in base 60 becomes
8,20 (actually eight 1-symbols followed by two 10-symbols).

Fractions were also written in base 60 so that 3/4 becomes
0;45 in base 60, but decimal points and zeros didn’t appear,
so 3/4 would look like 45. (The semicolons and commas we
use to transcribe their numbers don’t correspond to anything
in their writing. We use them to help us understand what
they had to tell by context.)

Since it’s a place-value system, addition, subtraction, and
multiplication algorithms are the same ones we use in base
10, except done base 60, and so they’re a bit more com-
plicated. They didn’t use long division, however. Instead
they used tables to look up the reciprocal of the divisor and
multiplied that by the dividend.

They used several methods for finding square roots. The
simplest was just a table of squares and square roots, and
if what they were looking for wasn’t in the table, then they
used linear interpolation. They also used a couple of other
algorithms described in the text.

Problem 2. [10] Find the greatest common divisor of the
two numbers 1834 and 1274 by using the Euclidean algo-
rithm. (Computations are sufficient, but show your work.
An explanation is not necessary.)

Repeatedly subtract the smaller number from the larger
until the smaller divides the larger without remander. That
smaller is the GCD. You can speed things up a bit by replac-
ing the larger by the remainder when divided by the smaller.
For these two numbers, the GCD is 14.
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Problem 3. [20] Short essay on Euclid’s Elements.

The Elements is the earliest extant example of formal
mathematics. Describe its structure and how formal mathe-
matics depends on such a structure. (One or two paragraphs
should be sufficient.)

Formal mathematics requires careful definitions and clear
proofs.

The Elements begins with definitions and axioms (both
common notions and postulates). Some of these just de-
scribe the terms to be used, others are more substantive
and state specific assumptions about properties of the math-
ematical objects under study. Definitions are also given for
new concepts stated in terms of the old concepts as the new
concepts are needed. Propositions are stated one at a time
only using those terms already introduced, and each propo-
sition is proved rigorously. The proof begins with a detailed
statement of what is given and what is to be proved. Each
statement in the proof can be justified by definitions, ax-
ioms, previously proved propositions, or as an assumption
in the beginning of a proof by contradiction. The last state-
ment in a proof is that which was to be proven.

This structure (where each proof depends on previously
proved propositions, definitions, and axioms) is required to
prevent circular arguments. The definitions and axioms are
starting points for the theory.

Problem 4. [20; 10 points each part] On Egyptian arith-
metic.

a. Illustrate how the Egyptian multiplication algorithm
works by computing 45 times 97 (which is 4365).

You either can start with a line with 1 and 45 in it and
repeatedly double that line until you find a sum of powers
of 2 in the left column that give 97, or you can start with
a line with 1 and 97 and repeatedly double that line until
you find a sum of powers of 2 giving 45. In either case, add
the corresponding entries in the second column to find the
product.

b. Illustrate how Egyptian division algorithm works by
computing 4365 divided by 97 (which is 45).

Start with the line of 1 and 97 and repeatedly double it
until you find a sum of numbers in the right column that
add to 4365, then add the corresponding entries in the left
column to find the quotient 45.

Problem 5. [20; 4 points each part] True/false. For each
sentence write the whole word “true” or the whole word
“false”. If it’s not clear whether it should be considered
true or false, you may explain in a sentence if you prefer.

a. A common ancient approximimation for the circumfer-
ence of a circle was three times its diameter. True.

b. Whereas the Egyptians wrote on clay tablets, the
Babylonians used papyrus. False. That’s just backwards.

c. Negative numbers were accepted in Egypt but not in
Babylonia or Greece. False. None of them used negative
numbers.

d. Perfect numbers are whole numbers whose only prime
factors are 2, 3, and 5. False. A number if perfect if it is
the sum of its proper divisors, like 28 = 1 + 2 + 4 + 7 + 14.

e. Euclid gave constructions of regular n-gons for n =
5, 6, 7, 8, and 9. False. No, a 9-gon can’t be constructed
with Euclidean tools since it requires trisection of an angle.
Also, 7-gons can’t be constructed. He did give constructions
for the others.
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