Name: \qquad

Mailbox number: \qquad

Math 120 Calculus I

First Test
September 2013
You may use a calculator. Leave your answers as expressions such as $e^{2} \sqrt{\frac{\sin ^{2}(\pi / 6)}{1+\ln 10}}$ if you like. Show all your work for credit. Points for each problem are in square brackets.

1. [12] On limits of average rates of change. Let $f(x)=x^{2}-3 x$.
a. [4] Write down an expression that gives the average rate of change of this function over the interval between x and $x+h$, and simplifly the expression.
b. [8] Compute the limit as $h \rightarrow 0$ of that average rate of change.
2. [10; 5 points each] On the intutitive concept of limit and continuity.
a. [5] Sketch the graph $y=f(x)$ of a function for which $\lim _{x \rightarrow 0} f(x)$ does not exist.

b. [5] Sketch the graph $y=f(x)$ of a function defined everywhere, the limit $\lim _{x \rightarrow 0} f(x)$ does exist, but f is not continuous at $x=0$.

3. $[10 ; 5$ points each property] On asymptotes.
a. Sketch the graph of a function f such that

$$
\lim _{x \rightarrow 2^{-}} f(x)=\infty \text { and } \lim _{x \rightarrow 2^{+}} f(x)=-\infty
$$

b. Sketch the graph of a function f such that $\lim _{x \rightarrow \infty} f(x)=1$.

4. [28; 7 points each part] Evaluate the following limits. If a limit diverges to $\pm \infty$ it is enough to say that it doesn't exist.
a. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3 x+2}$
b. $\lim _{x \rightarrow 1} \frac{x^{2}-4}{x^{2}-3 x+2}$
c. $\lim _{x \rightarrow \infty} \frac{4 x^{3}-2 x}{9 x^{3}+1}$
d. $\lim _{x \rightarrow 0} \frac{4 \sin x}{5 x}$.
5. [15] On the formal definition of limit.

Consider the limit $\lim _{x \rightarrow 5}(2 x-3)$ which, of course, has the value 7 . Since it has the value 7 , that means that for each $\epsilon>0$, there exists some $\delta>0$, such that for all x, if $0<|x-5|<\delta$, then $|(2 x-3)-7|<\epsilon$.

Let $\epsilon=\frac{1}{2}$. Find a value of δ that works for this ϵ. (Show your work.)
6. [10] Suppose that θ is an angle between $-\pi / 2$ and 0 , and that $\cos \theta=\frac{1}{2} \sqrt{2}$. Determine the value of $\sin \theta$.
7. $\left[15 ; 5\right.$ points each part] Suppose that $\lim _{x \rightarrow \pi} f(x)=5$ and $\lim _{x \rightarrow \pi} g(x)=3$. Evaluate each of the following limits, or explain why it doesn't exist
a. $\lim _{x \rightarrow \pi} \frac{f(x)}{g(x)}$
b. $\lim _{x \rightarrow \pi} \frac{f(x)}{g(x)+3 \cos x}$
c. $\lim _{x \rightarrow \pi} \sqrt{x+f(x) g(x)}$

$\# 1 .[12]$	
$\# 2 .[10]$	
$\# 3 .[10]$	
$\# 4 .[28]$	
$\# 5 .[15]$	
$\# 6 .[10]$	
$\# 7 .[15]$	
Total	

