First Test Answers
Math 120 Calculus I
September, 2013

Scale. $90-100$ A, $80-89$ B, 65-79 C. Median 80.

1. [12] On limits of average rates of change. Let $f(x)=x^{2}-3 x$.
a. [4] Write down an expression that gives the average rate of change of this function over the interval between $x$ and $x+h$, and simplifly the expression.

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h} \\
= & \frac{\left((x+h)^{2}-3(x+h)\right)-\left(x^{2}-3 x\right)}{h}
\end{aligned}
$$

b. [8] Compute the limit as $h \rightarrow 0$ of that average rate of change.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\left((x+h)^{2}-3(x+h)\right)-\left(x^{2}-3 x\right)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\left.x^{2}+2 x h+h^{2}-3 x-3 h-x^{2}+3 x\right)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\left.2 x h+h^{2}-3 h\right)}{h} \\
= & \lim _{h \rightarrow 0}(2 x+h-3)=2 x-3
\end{aligned}
$$

2. $[10 ; 5$ points each $]$ On the intutitive concept of limit and continuity.
a. [5] Sketch the graph $y=f(x)$ of a function for which $\lim _{x \rightarrow 0} f(x)$ does not exist.

There are many such graphs. For example, if there's a jump in the value of $f$ at $x=0$, then that limit won't exist. See section 2.4 of the text.
b. [5] Sketch the graph $y=f(x)$ of a function defined everywhere, the limit $\lim _{x \rightarrow 0} f(x)$ does exist, but $f$ is not continuous at $x=0$.

This can be achieved by making $f(0)$ unequal to the limit, but make sure that the function is defined at $x=0$. See section 2.5 of the text.
3. $[10 ; 5$ points each property $]$ On asymptotes. a. Sketch the graph of a function $f$ such that

$$
\lim _{x \rightarrow 2^{-}} f(x)=\infty \text { and } \lim _{x \rightarrow 2^{+}} f(x)=-\infty
$$

The graph of the function should should be asymptotic to the vertical line $x=2$. See section 2.6 of the text.
b. Sketch the graph of a function $f$ such that $\lim _{x \rightarrow \infty} f(x)=1$.

The graph of the function should should be asymptotic to the horizontal line $y=1$. See section 2.6 of the text.
4. [28; 7 points each part] Evaluate the following limits. If a limit diverges to $\pm \infty$ it is enough to say that it doesn't exist.
a. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3 x+2}$

The expression needs to be simplified before taking the limit.

$$
\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{(x-1)(x-2)}=\lim _{x \rightarrow 1} \frac{x+1}{x-2}=-2
$$

b. $\lim _{x \rightarrow 1} \frac{x^{2}-4}{x^{2}-3 x+2}$

The number approaches -3 while the denominator approaches 0 , so the limit of the quotient doesn't exist.

$$
\text { c. } \lim _{x \rightarrow \infty} \frac{4 x^{3}-2 x}{9 x^{3}+1}
$$

The numerator and denominator have the same degree, so as $x \rightarrow \infty$, the value approaches the ratio of the leading coefficients, $\frac{4}{9}$. This can be seen by dividing the numerator and denominator by $x^{3}$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{4 x^{3}-2 x}{9 x^{3}+1} & =\lim _{x \rightarrow \infty} \frac{4-2 / x^{2}}{9+1 / x^{3}} \\
& =\frac{4-0}{9-0}=\frac{4}{9}
\end{aligned}
$$

d. $\lim _{x \rightarrow 0} \frac{4 \sin x}{5 x}$.

Recall that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. Therefore this limit equals $\frac{4}{5}$.
5. [15] On the formal definition of limit.

Consider the limit $\lim _{x \rightarrow 5}(2 x-3)$ which, of course, has the value 7 . Since it has the value 7 , that means that for each $\epsilon>0$, there exists some $\delta>0$, such that for all $x$, if $0<|x-5|<\delta$, then $|(2 x-3)-7|<$ $\epsilon$.

Let $\epsilon=\frac{1}{2}$. Find a value of $\delta$ that works for this $\epsilon$.

You need to find a value of $\delta$ so that

$$
0<|x-5|<\delta \text { implies }|(2 x-3)-7|<\frac{1}{2} .
$$

The expression $|(2 x-3)-7|$ can be rewritten as $|2 x-10|$ which equals $2|x-5|$. Therefore, the condition $|(2 x-3)-7|<\frac{1}{2}$ is equivalent to $|x-5|<\frac{1}{4}$. Thus, you need to find a value of $\delta$ so that

$$
0<|x-5|<\delta \text { implies }|x-5|<\frac{1}{4} .
$$

Such a value is $\delta=\frac{1}{4}$.
6. [10] Suppose that $\theta$ is an angle between $-\pi / 2$
and 0 , and that $\cos \theta=\frac{1}{2} \sqrt{2}$. Determine the value
6. [10] Suppose that $\theta$ is an angle between $-\pi / 2$
and 0 , and that $\cos \theta=\frac{1}{2} \sqrt{2}$. Determine the value of $\sin \theta$.
Since $\cos \theta=\frac{1}{2} \sqrt{2}$, the Pythagorean identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ implies $\sin ^{2} \theta+\frac{1}{2}=1$. Hence, $\sin ^{2} \theta=\frac{1}{2}$, so $\sin \theta= \pm \frac{1}{2} \sqrt{2}$. Since $\theta$ is an angle $\sin ^{2} \theta=\frac{1}{2}$, so $\sin \theta= \pm \frac{1}{2} \sqrt{2}$. Since $\theta$ is an angle
between $-\pi / 2$ and 0 , the sine of $\theta$ is negative. Thus $\sin \theta=-\frac{1}{2} \sqrt{2}$.
7. $[15 ; \quad 5$ points each part] Suppose that
$\lim _{x \rightarrow \pi} f(x)=5$ and $\lim _{x \rightarrow \pi} g(x)=3$. Evaluate each of
the following limits, or explain why it doesn't exist
7. $[15 ; \quad 5$ points each part] Suppose that
$\lim _{x \rightarrow \pi} f(x)=5$ and $\lim _{x \rightarrow \pi} g(x)=3$. Evaluate each of
the following limits, or explain why it doesn't exist
7. $[15 ; \quad 5$ points each part] Suppose that
$\lim _{x \rightarrow \pi} f(x)=5$ and $\lim _{x \rightarrow \pi} g(x)=3$. Evaluate each of
the following limits, or explain why it doesn't exist

Since $f(x)$ approaches 5, and $g(x)$ approaches 3, the quotient approaches $\frac{5}{3}$.

$$
\text { a. } \lim _{x \rightarrow \pi} \frac{f(x)}{g(x)}
$$

b. $\lim _{x \rightarrow \pi} \frac{f(x)}{g(x)+3 \cos x}$

As $x$ approaches $\pi, \cos x$ approaches -1 . Therefore the denominator approaches 0 . But the numerator approaches 5 , so the limit doesn't exist.

$$
\text { c. } \lim _{x \rightarrow \pi} \sqrt{x+f(x) g(x)}
$$

The product $f(x) g(x)$ approaches 15 , so $x+$ $f(x) g(x)$ approaches $\pi+15$. Since the square root function is continuous, the limit approaches $\sqrt{\pi+15}$.

