Proof of the Fundamental Theorem of Calculus Math 120 Calculus I
D Joyce, Fall 2013

The statements of FTC and FTC^{-1}. Before we get to the proofs, let's first state the Fundamental Theorem of Calculus and the Inverse Fundamental Theorem of Calculus. When we do prove them, we'll prove FTC^{-1} before we prove FTC. The FTC is what Oresme propounded back in 1350 .
(Sometimes FTC^{-1} is called the first fundamental theorem and FTC the second fundamental theorem, but that gets the history backwards.)
Theorem 1 (FTC). If F^{\prime} is continuous on $[a, b]$, then

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) .
$$

In other words, if F is an antiderivative of f, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

A common notation for $F(b)-F(a)$ is $\left.F(x)\right|_{a} ^{b}$.
There are stronger statements of these theorems that don't have the continuity assumptions stated here, but these are the ones we'll prove.

Theorem $2\left(\mathrm{FTC}^{-1}\right)$. If f is a continuous function on the closed interval $[a, b]$, and F is its accumulation function defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

for x in $[a, b]$, then F is differentiable on $[a, b]$ and its derivative is f, that is, $F^{\prime}(x)=f(x)$ for $x \in[a, b]$.

Frequently, the conclusion of this theorem is written

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Note that a different variable t is used in the integrand since x already has a meaning. Logicians and computer scientists are comfortable using the same variable for two different purposes, but they have to resort to the concept of "scope" of a variable in order to pull that off. It's usually easier to make sure that each variable only has one meaning. Thus, we use one variable x as a limit of integration, but a different variable t inside the integral.

Our first proof is of the FTC^{-1}.

Proof of the FTC^{-1}. First of all, since f is continuous, it's integrable, that is to say,

$$
F(x)=\int_{a}^{x} f(t) d t
$$

does exist.
We need to show that $F^{\prime}(x)=f(x)$. By the definition of derivatives,

$$
\begin{aligned}
F^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
\end{aligned}
$$

We'll show that this limit equals $f(x)$. Although a complete proof would consider both cases $h<0$ and $h>0$, we'll only look at the case when $h>0$; the case for $h<0$ is similar but more complicated by negative signs.

We'll concentrate on the values of the continuous function $f(x)$ on the closed interval $[x, x+h]$. On this interval, f takes on a minimum value m_{h} and a maximum value M_{h} (by the Extremal Value Theorem for continuous functions on closed intervals). Since $m_{h} \leq f(t) \leq M_{h}$ for t in this interval $[x, x+h]$, therefore when we take the definite integrals on this interval, we have

$$
\int_{x}^{x+h} m_{h} d t \leq \int_{x}^{x+h} f(t) d t \leq \int_{x}^{x+h} M_{h} d t
$$

But $\int_{x}^{x+h} m_{h} d t=h m_{h}$, and $\int_{x}^{x+h} M_{h} d t=h M_{h}$, so, dividing by h, we see that

$$
m_{h} \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq M_{h}
$$

Now, f is continuous, so as $h \rightarrow 0$ all the values of f on the shortening interval $[x, x+h]$ approach $f(x)$, so, in particular, both the minimum value m_{h} and the maximum value M_{h} approach $f(x)$. But if both m_{h} and M_{h} approach the same number $f(x)$, then anything between them also approaches it, too. Thus

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t=f(x)
$$

thereby proving $F^{\prime}(x)=f(x)$.
Q.E.D.

We'll now go on to prove the FTC from the FTC^{-1}.
Proof of the FTC. Let

$$
G(x)=\int_{a}^{x} F^{\prime}(t) d t
$$

Then by $\mathrm{FTC}^{-1}, G^{\prime}(x)=F^{\prime}(x)$. Therefore, G and F differ by a constant C, that is, $G(x)-$ $F(x)=C$ for all $x \in[a, b]$. But

$$
G(a)=\int_{a}^{a} F^{\prime}(t) d t=0
$$

and $G(a)-F(a)=C$, so $C=-F(a)$. Hence, $G(x)-F(x)=-F(a)$ for all $x \in[a, b]$. In particular, $G(b)-F(b)=-F(a)$, so $G(b)=F(b)-F(a)$, that is,

$$
\int_{a}^{b} F^{\prime}(t) d t=F(b)-F(a)
$$

Q.E.D.

Math 120 Home Page at http://math.clarku.edu/~djoyce/ma120/

