
Math 128, Modern Geometry

D. Joyce, Clark University

4 Nov 2005

Due Monday. From chapter 13, exercises 1, 2, 6,
11.

Last time. Continued our introduction to pro-
jective geometry. We’ve seen three models for the
projective plane.

(1) points of the projective plane are modelled
by lines in R3 through the origin, while lines in
the projective plane are modelled by planes in R3

through the origin.
(2) points of the projective plane are modelled by

pairs of antipodal points on the unit sphere, while
lines in the projective plane are modelled by great
circles on the unit sphere.

(e) points of the projective plane are modelled by
points in one hemisphere of the unit sphere (includ-
ing half of the boundary of that hemisphere), while
lines in the projective plane are modelled by the
parts of great circles that lie in that hemisphere.

We also studied homogeneous coordinates
(x, y, z) for points and homogeneous coordinates
[a, b, c] for lines, and noted that a point (x, y, z) lies
on a line [a, b, c] if an only if their dot product is 0,
that is [a, b, c] · (x, y, z) = ax + by + cz = 0. Since
that equation is symmetric with respect to points
and lines, therefore any theorem about points and
lines in the projective plane yields a dual theorem
where the role of lines and points are interchanged.

Today. Cross products. Projective transforma-
tions. The fundamental theorem for the projective
plane.

Cross products. The cross product of two vec-
tors u = (u1, u2, u3) and v = (v1, v2, v3) is another
another vector denoted u × v. The easiest way to

define cross products is to use the standard unit
vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).
Then we can write

u = (u1, u2, u3) = u1i + u2j + u3k,

and
v = (v1, v2, v3) = v1i + v2j + v3k,

and u × v is defined as

u×v = (u2v3−u3v2)i+(u3v1−u1v3)j+(u1v2−u2v1)k

which is much easier to remember when you write
it as a determinant
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We can use cross products to work with points
and lines in the projective plane. In particular,
they can be used to find the line determined by
two points, and to find the point determined by
two lines.

If u = (u1, u2, u3) and v = (v1, v2, v3) are the
homogeneous coordinates for two points, then u×v

gives the homogeneous coordinates for the line that
passes through them. Dually, if u = [u1, u2, u3] and
v = [v1, v2, v3] are the homogeneous coordinates
for two lines, then u × v gives the homogeneous
coordinates for the point where they intersect.

Projective transformations. We would like to
put our study of projective geometry into Klein’s
Erlanger Programm. That means we need to
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know the group of transformations of the projec-
tive plane. In other words, we have to answer the
question: what is a projective transformation. The
answer is any transformation that preserves points
and lines, or preserves collinearity. More precisely,
it’s a transformation T on the set of points of the
projective plane, and we’ll model points using ho-
mogeneous coordinates, so that if u, v, and w are
three collinear points, then so are T (u), T (u), and
T (u) collinear.

We can model such a transformation as an in-
vertible function T : R3

→ R3 that sends 0 to 0,
straight lines through 0 to straight lines through 0,
and planes through 0 to planes through 0. These
conditions are equivalent to requiring that T be an
invertible linear transformation. A transformation
is linear if it preserves linear combinations, that is,

T (au + bv) = aT (u) + bT (v)

where a and b are any real numbers and u and v

are any vectors.
A linear transformation T can be described by a

3 × 3 matrix
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where u is the vector
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 and the matrix entries

a, . . . , i are real constants.

The fundamental theorem for the projec-

tive plane. Recall the fundamental theorem for
the Möbius plane. It said that there is a unique
Möbius transformation that sends any given three
points to any other given three points. The funda-
mental theorem for the projective plane is similar,
but for four noncollinear points. If p0, p1, p3, and
p4 are four points in the projective plane, no three
of which are collinear, and q0, q1, q3, and q4 are
four more points in the projective plane, no three
of which are collinear, then there is a unique pro-
jective transformation that maps each point pi to
the corresponding point qi for i = 1, 2, 3, 4.
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