Math 128, Modern Geometry

D. Joyce, Clark University

14 Sep 2005

Last week we looked at the assumptions of the proof the the Pythagorean theorem in more detail. Here's a modified proof with some of those details included.

Given information. Let $A B C$ be a right triangle with right angle at C, and let a, b, and c be the sides opposite the vertices A, B, and C, respectively.

Part I. The construction of the figure. Apply an isometry of the plane which moves A to B and moves C to a point D on the line $C B$. Let that isometry move the point B to the point E on the other side of the line $C B$. This results in a triangle $B D E$ congruent to the original triangle $A C B$. Therefore, $D E=a, B D=b$, and $B E=c$.

Next, apply an isometry of the plane which moves B to E and moves D to a point F on the line $D E$. Let that isometry move the point E to a point G on the other side of the line $D E$. This results in a triangle $E F G$ congruent to triangle $B D E$, and, therefore, congruent to the original triangle $A C B$. Therefore, $F G=a, E F=b$, and $E G=c$.

Next, apply an isometry of the plane which moves E to G and moves F to a point H on the line $F G$. Let that isometry move the point G to a point K on the other side of the line $F G$. This results in a triangle $G H K$ congruent to triangle $E F G$, and, therefore, congruent to the original triangle $A C B$. Therefore, $F G=a, E F=b$, and $E G=c$.

Then K coincides with A (we have to figure out why), and C lies on the line $A H$ (again, we have to figure out why). That gives us a figure with four congruent triangles.

Part II. Why the inner and outer figures are squares. We define a square as a four-sided figure whose four sides are all equal and whose four angles are all right. Since the four triangles are congruent, we know the four sides of the outer figure all have the same length c. The four sides of the inner figure are each differences between line segments of length a and line segments of length b. Assuming $b>a$, that implies each side of the inner figure has length $b-a$. (If $a<b$ or $a=b$, there are other cases to consider.)

We still have to show the the four angles of the outer and inner figures are all right angles. A right angle is defined as being an angle made when a ray meets a line making two equal angles. By assumption, the original triangle $A B C$ has a right angle at C. That means angle $A C B$ and its supplement, angle $H C B$ are both right angles. Since the corresponding angles of the other three congruent triangles are equal, that means we have eight right angles in the diagram, namely, $A C B, H C B$, $B D, C D E, E F G, D F G, G H A$, and $F H A$. Four of these are the angles of the inner figure; therefore, the figure $C D F H$ is a square.

For the outer figure to be a square, we have to show its four angles, $G A B, A B E, B E G$, and $E G A$ are right angles. Each is the sum of two angles of the four congruent triangles, and, since they are congruent triangles, each is the sum of equal angles,
so all four angles of the outer figure are equal. But we have yet to show they are right angles. Take one of them, angle $G A B$. It is the sum of the two angles $G A H$ and $C A B$. But angle $G A H$ equals angle $A B C$, so the outer angle $G A B$ is the sum of two angles $A B C$ and $C A B$ of the right triangle $A B C$, where the third angle $A C B$ is a right angle. But the sum of the three interior angles of any triangle equals 2 right angles (we recognize that as a proposition that this proof relies on), therefore, angle $G A B$ equals one right angle. Likewise the other three angles of the outer figure are right angles. Therefore, figure $A B E G$ is a square.

Part III. The derivation of the Pythagorean identity. Then the large $c \times c$ square is made out of four congruent triangles each with area $a b / 2$ and the square hole of area $(b-a)^{2}$. Therefore,
$c^{2}=4 \frac{a b}{2}+(b-a)^{2}=2 a b+b^{2}-2 a b+a^{2}=a^{2}+b^{2}$.
Q.E.D.

That's pretty much the way things stand now. We've identified some definitions and a major proposition (about the interior angle sum of a triangle), as well as a few minor points, and a major gap (why K coincides with A and the lines $A C$ and KH are the same) in the proof.

