Math 128, Modern Geometry

D. Joyce, Clark University

7 Oct 2005

We've analyzed a nice proof of the Pythagorean theorem and found that it depends on a number of assumptions. Some of these assumptions are merely definitions, and some we found we could prove based on what we consider more primitive assumptions.

Although we haven't finished the process of analysis, it's time we wrote up what we've got. When we write it up, we won't do it in the order that we discovered things; instead, we'll write it up in a logical order so that assumptions that are used in proofs of theorems appear before the theorems appear. That means the Pythagorean theorem will appear last, those theorems it depends on in the middle, and the statements those depend on at the beginning.

Definitions and unproved statements.

Definition. When one straight line meets another straight line making two equal angles, those two equal angles are called right angles, and the two straight lines are said to be orthogonal or perpendicular lines.
Definition. A right triangle is a triangle one of whose angles is a right angle. The side opposite the right angle is called the hypotenuse of the right triangle, and the other two sides its legs.
Definition. Two triangles, $A B C$ and $D E F$, are congruent if corresponding angles and sides are equal, that is, angle A equals angle D, angle B equals angle E, angle C equals angle F, side $A B$ equals side $D E$, side $B C$ equals side $E F$, side $C A$ equals side $F D$.
Definition. A parallelogram is a four-sided figure having parallel opposite sides.

Definition. A rectangle is a four-sided figure having four right angles.

Definition. A square is a rectangle having four right angles and four equal sides.

Unproved statement. (SAS congruence theorem.) If two triangles, $A B C$ and $D E F$, have angle A equal to angle D, angle B equal to angle E, and included side $A B$ equal to included side $D R$, then the two triangles are congruent.

Unproved statement. The alternate interior angles a transversal line makes with two parallel lines are equal

Unproved statement. The sum of the three interior angles of any triangle equals two right angles.

Unproved statement. Two lines that are perpendicular to the same line are parallel.

Unproved statement. Lines parallel to perpendicular lines are perpendicular to each other.
Unproved statement. The area of a right triangle is half the product of its legs.

Unproved statement. The area of a square is the product of two of its sides.

Intermediate statements that we've proved, i.e., theorems.

Theorem. Opposite sides of a parallelogram are equal.

Proof: Let $A B C D$ be a parallelogram. Draw a diagonal line $A C$ connecting opposite vertices of the parallelogram.

The alternate interior angles this transversal $A C$ makes with the parallel lines $A B$ and $C D$ are equal, so angle $B A C$ equals angle $D C A$. Likewise, he alternate interior angles it makes with the parallel lines $A D$ and $B C$ are equal, so angle $D A C$ equals angle $B C A$. We have two triangles, namely, triangle $B A C$ and triangle $D C A$, with two equal corresponding angles, and the side between those angles, namely, $A C$ is equal in both triangles; therefore, these two triangles are congruent. Therefore, the corresponding sides $A B$ and $C D$ of these two congruent triangles are equal. Thus, we have shown that the opposite sides of the parallelgram are equal.
Q.E.D.

Theorem. Opposite sides of a rectangle are equal.
Proof: Since opposite sides of a rectangle are perpendicular to the remaining sides, therefore opposite sides are parallel. Thus, a rectangle is a parallelogram. But parallelograms have equal opposite sides, so rectangles do, too.
Q.E.D.

The Pythagorean theorem. The square on the hypotenuse of a right triangle equals the sum of the squares on the other two sides.
Proof: Let $A B C$ be a right triangle with right angle at C, and let a, b, and c be the sides opposite the vertices A, B, and C, respectively.

Let $A B C$ be a right triangle with right angle at C, and let a, b, and c be the sides opposite the vertices A, B, and C, respectively.

Part I. The construction of the figure. Apply an isometry of the plane which moves A to B and moves C to a point D on the line $C B$. Let that isometry move the point B to the point E on the other side of the line $C B$. This results in a triangle $B D E$ congruent to the original triangle $A C B$. Therefore, $D E=a, B D=b$, and $B E=c$.

Next, apply an isometry of the plane which moves B to E and moves D to a point F on the line $D E$. Let that isometry move the point E to a point G on the other side of the line $D E$. This results in a triangle $E F G$ congruent to triangle $B D E$, and, therefore, congruent to the original triangle $A C B$. Therefore, $F G=a, E F=b$, and $E G=c$.

Next, apply an isometry of the plane which moves E to G and moves F to a point H on the line $F G$. Let that isometry move the point G to a point K on the other side of the line $F G$. This results in a triangle $G H K$ congruent to triangle $E F G$, and, therefore, congruent to the original triangle $A C B$. Therefore, $F G=a, E F=b$, and $E G=c$.

Now, two lines that are perpendicular to the same line are parallel. In our figure, $H F$ and $C D$ are both perpendicular to $D F$, so they're parallel. Also, $L H$ and $D F$ are perpendicular to $H F$, so they're parallel.

Next, lines parallel to perpendicular lines are perpendicular to each other. Since $H F \| C D$, and $L H \| D F$, and $H F \perp D F$, therefore $H L \perp C D$.

Therefore, lines $H L$ and $D C$ meet at some point M with a right angle at M.

In the central figure

all four angles are right, so $H F D M$ is a rectangle. Also, two adjacent sides, $H F$ and $F D$, of this rectangle are equal, so the opposite sides $M D$ and $H M$ are also equal to them. Hence, $H F D M$ is a square.

Then C coincides with M since $C D=M D$ and they lie on the same line. Furthermore, this lines $H C$ and $H K$ coincide because angles $F H C$ and FHK are both right angles. That gives us a figure with four congruent triangles surrounding a square in the middle.

Since the four triangles are congruent, we know the four sides of the outer figure all have the same length c.

For the outer figure to be a square, we have to show its four angles, $G A B, A B E, B E G$, and $E G A$ are right angles. Each is the sum of two angles of the four congruent triangles, and, since they are congruent triangles, each is the sum of equal angles, so all four angles of the outer figure are equal. But we have yet to show they are right angles. Take one of them, angle $G A B$. It is the sum of the two angles $G A H$ and $C A B$. But angle $G A H$ equals angle $A B C$, so the outer angle $G A B$ is the sum of two angles $A B C$ and $C A B$ of the right triangle $A B C$, where the third angle $A C B$ is a right angle. But the sum of the three interior angles of any triangle equals two right angles, therefore, angle $G A B$ equals one right angle. Likewise the other three angles of the outer figure are right angles. Therefore, figure $A B E G$ is a square.
Part II. The derivation of the Pythagorean identity. Then the large $c \times c$ square is made out of four
congruent triangles each with area $a b / 2$ and the square hole of area $(b-a)^{2}$. Therefore,
$c^{2}=4 \frac{a b}{2}+(b-a)^{2}=2 a b+b^{2}-2 a b+a^{2}=a^{2}+b^{2}$.
Q.E.D.

