

Seventh assignment Math 217 Probability and Statistics Prof. D. Joyce, Fall 2014

1. Choose a number B at random from the interval [0, 1] with uniform density. Find the probability that

a. $\frac{1}{3} < B < \frac{2}{3}$ **b.** $|B - \frac{1}{2}| \le \frac{1}{4}$. **c.** $B < \frac{1}{4}$ or $1 - B < \frac{1}{4}$. **d.** $3B^2 < B$.

2. Let x and y be chosen uniformly and independently at random from the interval [0, 1]. Which pairs of the following events are independent?

a. x > 1/3.
b. y > 2/3.
c. x > y.
d. x + y < 1.

3. Let X be a random variable with cumulative distribution function F. The *median* of X is the value m for which $F(m) = \frac{1}{2}$. Then X < m with probability $\frac{1}{2}$ and X > m with probability $\frac{1}{2}$. Find m if X is

a. uniformly distributed over the interval [a, b].

b. exponentially distributed with parameter λ .

4. Let X be a random variable normally distributed with parameters $\mu = 70, \sigma = 10$. Estimate

a. P(X > 50).
b. P(X < 60).
c. P(X > 90).
d. P(60 < X < 80).

5. A final examination at Podunk University is constructed so that the test scores are approximately normally distributed, with parameters μ and σ . The instructor assigns letter grades to the test scores as shown below (this is the process of "grading on the curve").

Test Score	Letter grade
$\mu + \sigma < x$	А
$\mu < x < \mu + \sigma$	В
$\mu - \sigma < x < \mu$	\mathbf{C}
$\mu - 2\sigma < x < \mu - \sigma$	D
$x < \mu - 2\sigma$	\mathbf{F}

What fraction of the class gets A, B, C, D, F?

6. Let X_1 and X_2 be independent random variables with common distribution

$$p_X = \begin{pmatrix} 0 & 1 & 2\\ 1/8 & 3/8 & 1/2 \end{pmatrix}.$$

Find the distribution of the sum $X_1 + X_2$.

7. Let X and Y be independent random variables defined on the space Ω , with density functions f_X and f_Y , respectively. Suppose that Z = X + Y. Find the density f_Z of Z if

$$f_X(x) = f_Y(x) = \begin{cases} 1/2, & \text{if } -1 \le x \le +1, \\ 0, & \text{otherwise.} \end{cases}$$

8. Suppose again that Z = X + Y. Find f_Z if

$$f_X(x) = f_Y(x) = \begin{cases} x/2, & \text{if } 0 < x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

Math 217 Home Page at http://math.clarku.edu/~djoyce/ma217/