Eighth assignment
Math 217 Probability and Statistics
Prof. D. Joyce, Fall 2014

1. (Exercise 6.47) Consider a sample of size 5 from a uniform distribution over $[0,1]$. Compute the probability that the median lies in the interval $\left[\frac{1}{4}, \frac{3}{4}\right]$.
2. (Exercise 6.48) If $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ are independent and identically distributed exponential random variables with the parameter λ, compute
a. $P\left(\min \left(X_{1}, \ldots, X_{5}\right) \leq a\right)$ where a is a positive constant.
b. $P\left(\max \left(X_{1}, \ldots, X_{5}\right) \leq a\right)$.
3. (Exercise 6.52) Let X and Y denote the coordinates of a point chosen uniformly at random in the unit circle. Then the joint density function $f(x, y)$ is constantly $1 / \pi$ when $x^{2}+y^{2} \leq 1$, and 0 otherwise.
a. Show that the Jacobian for the change to polar coordinates is

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=r .
$$

You'll probably recognize that Jacobian from change of coordinates formula. $d x d y=r d r d \theta$.
b. Find the joint density function for the polar coordinates $R=\sqrt{X^{2}+Y^{2}}, \Theta=\arctan \frac{Y}{X}$.
4. (Exercise 6.56a) If X anad Y are independent and identically distributed uniform random variables on $[0,1]$, compute the joint density of $U=X+Y, V=X / Y$.
5. (Exercise 7.4) If X and Y have the joint density function

$$
f(x, y)=\left\{\begin{array}{cl}
1 / y & \text { if } 0<x<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

find
a. $E(X Y)$
b. $E(X)$
c. $E(Y)$
6. (Exercise 7.30) Let X and Y be independent and identically distributed random variables with mean μ and variance σ^{2}. Find $E\left((X-Y)^{2}\right)$.
7. (Exercise 7.38) Let random variables X and Y have joint density

$$
f(x, y)=\left\{\begin{array}{cl}
2 e^{-x} / x & \text { if } 0 \leq y \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Compute $\operatorname{Cov}(X, Y)$.
8. (Exercise 7.45a) Let X_{1}, X_{2}, X_{3} be pairwise uncorrelated random variables, that is, any pair of them have correlation 0 , and let each of them have mean 0 and variance 1. Compute the correlations of $X_{1}+X_{2}$ and $X_{2}+X_{3}$.

Math 217 Home Page at http://math.clarku.edu/~djoyce/ma217/

