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Probability as a model. We’ll use probability
to understand some aspect of the real world. Typ-
ically something will occur that could have a num-
ber of different outcomes. We’ll associate proba-
bilities to those outcomes. In some situations we’ll
know what those probabilities are. For example,
when there are n different outcomes and there’s
some symmetry to the situation which indicates
that all the outcomes should have the same prob-
ability, then we’ll assign all the outcomes a prob-
ability of 1/n. In other situations we won’t know
what the probabilities are and our job is to estimate
them.

Besides individual outcomes we’ll want to assign
probabilities to sets of outcomes. We’ll use the term
event to indicates a subset of all the possible out-
comes.

Discrete probability distributions. We’ll
start with the case of discrete probabilities and
then go to the general case.

Definition. A discrete probability distribution on a
set Ω is a function P : Ω → [0, 1], defined on a
finite or countably infinite set Ω called the sample
space. The elements x of Ω are called outcomes.
Each outcome is assigned a number P (x), called
the probability of x with 0 ≤ P (x) ≤ 1. It is re-
quired that the sum of all the values P (x) equals
1. Furthermore, for each subset E of Ω, called an
event, we define the probability of E, denoted P (E),
to be the sum of all the values P (x) for s in E.

It’s useful to have a special symbol like Ω to de-
note a sample space. That way when you see it,
you can tell right away what it is.

Note that we’re assigning to the event which is
the singleton set {x} the same probability we as-

sign to the outcome x, that is P ({x}) = P (x). If
nothing else, this allows us to dispence with excess
parentheses.

Most of our examples of discrete probabilities will
have finite sample spaces, in which case the discrete
probability is called a finite probability.

An example that we’ve already looked at is
rolling a fair die. The sample space is Ω =
{1, 2, 3, 4, 5, 6}. The probability of each of the six
outcomes is 1

6
. The probability of an event E de-

pends on the number of outcomes in it. If E has k
elements, then P (E) = k/6.

More generally, whenever you have uniform dis-
crete probability with n possible outcomes, each
outcome has probability 1/n, and the probability
of and event E is equal to its cardinality divided
by n. So P (E) = |E|/n.

Here’s an example of an infinite discrete proba-
bility. Toss a fair coin repeatedly until an H shows
up. Record the number of tosses required. The
sample space is Ω = {1, 2, 3, 4, . . .}. We can easily
determine the probabilities on Ω. With probabil-
ity 1

2
, H shows up on the first toss, so P (1) = 1

2
.

Otherwise, we get T and toss the coin again. Since
on the second toss we’ll get H with probability 1

2
,

but we only reach the second toss with probability
1
2
, therefore P (2) = 1

4
. Likewise, P (3) = 1

8
, and in

general, P (n) = 1/2n. Now, this function satisfies
the condition to be a discrete probability since the
sum of all the values P (x) equals 1. That’s because

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · · = 1.

Recall that infinite sums are called series. This
particular series is an example of a geometric series.

Continuous probabilities. Discrete distribu-
tions are fairly easy to understand whether they’re
finite or infinite. All you need to know for a such
a distribution is the probablilities of each individ-
ual outcome x, which we’ve denoted P (x). Then
the probability of an event is just the sum of the
probabilities of all the outcomes in the event.

Besides discrete distributions, there are also con-
tinuous distributions. They are just as important
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as the discrete ones, but they’re a little more com-
plicated to understand, so first we’ll study the dis-
crete case in depth. Even thought we’re putting off
a study of the continuous case, we should at least
survey what they are.

In a continuous distribution there are uncount-
ably many outcomes, and the probability of each
outcome x is 0. Therefore, the probability of any
event that has only finitely many outcomes in it
will also be 0. Furthermore, the probability of any
event that even has countably infinitely many out-
comes in it will also be 0. But there will be events
that have uncountably many outcomes, and those
events may have positive probability. We’ll need to
look at examples to see how this works.

(Recall that an infinite set is countable if its ele-
ments can be listed, that is, it is in one-to-one cor-
respondence with the positive integers 1, 2, 3, . . ..
But many useful infinite sets are uncountable. The
set of real numbers is uncountable as are intervals
of real numbers.)

A continuous probability example. Our ex-
ample is the uniform continuous distribution on
the unit interval Ω = [0, 3]. The outcome of an
experiment with this distribution is some num-
ber X that takes a value between 0 and 3. We
want to capture the notion of uniformity. We’ll
do this by assuming that the probability that X
takes a value in any subinterval [c, d] only depends
on the length of the interval. So for instance,
P (X ∈ [0, 1.5]) = P (X ∈ [1.5, 3]) so each equals
1
2
. Likewise, P (X ∈ [0, 1]) = P (X ∈ [1, 2]) =

P (X ∈ [2, 3]) = 1
3
. In fact, the probability that X

lies in [c, d] is proportional to the length d − c of
the subinterval. Thus, P (X ∈ [c, d]) = 1

3
(d− c).

We can still assign positive probabilities to many
events. For instance, we want P (X ≤ 1

2
) to be 1

2
,

and we want P (X ≥ 1
2
) to be 1

2
, too. In fact, if [a, b)

is any subinterval of [0, 1) we want P (a ≤ X < b)
to be b− a, the length of the interval.

It turns out, as we’ll soon see, that an entire con-
tinuous distribution is determined by the values of
a function F defined by F (x) = P (X ≤ x) for all

numbers x. Note how we’re using the symbol X
for a real random variable, that is, the numerical
outcome of an experiment, but we’re using the sym-
bol x to denote particular real numbers. The func-
tion F is called a cumulative distribution function,
abbreviated c.d.f., or, more simply, a distribution
function.

We can use F to determine probabilities of inter-
vals as follows

P (X ∈ [a, b]) = P (X≤b)−P (X≤a) = F (b)−F (a).

For a uniformly continuous random variable on
[0, 3] the c.d.f. is defined by

F (X) =


0 if x ≤ 0

x/3 if 0 ≤ x ≤ 3
1 if 3 ≤ x

Its graph is

y = F (x)
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More generally, a uniformly continuous random
variable on [a, b] has a c.d.f. which is 0 for x ≤ a,
1 for x ≥ b, and increases linearly from x = a to

x = b with derivative
1

b− a
on [a, b].

The probability density function f(x). Al-
though the c.d.f. is enough to understand con-
tinuous random variables (even when they’re not
uniform), a related function, the density function,
carries just as much information, and its graph vi-
sually displays the situation better. In general, den-
sities are derivatives, and in this case, the proba-
bility density function f(x) is the derivative of the
c.d.f. F (x). Conversely, the c.d.f. is the integral of
the density function.

f(x) = F ′(x) and F (x) =

∫ x

−∞
f(t) dt
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For our example of the uniformly continuous ran-
dom variable on [0, 3] the probability density func-
tion is defined by

f(X) =


0 if x ≤ 0

1/3 if 0 ≤ x ≤ 3
if 3 ≤ x

Its graph is

y = f(x)
1

3

More generally, a uniformly continuous random
variable on [a, b] has a density function which is 0
except on the interval [a, b] where it is the reciprocal

of the length of the interval,
1

b− a
.

We’ll come back to continuous distributions later,
and when we do, there will be many to consider
besides uniform distributions on intervals.

Next we’ll look at axioms for probability. These
are designed to work for both discrete and contin-
uous probabilities. They also work for mixtures of
discrete and continuous, and they even work when
the sample space is infinite dimensional, but we
won’t look at that in this course.

Kolmogorov’s axioms for probability distri-
butions. It’s not so easy to define probability
in the nondiscrete case. The probabilities of the
events (subsets of the sample space Ω) are not de-
termined by the probabilities of the outcomes (el-
ements of the sample space). A number of mathe-
maticians including Émile Borel (1871–1956), Henri
Lebesgue (1875–1941), and others worked on the
problem in the first part of the 1900s and devel-
oped the concept of a measure space. As Andrey
Kolmogorov (1903–1987) described it in 1933, a
probability distribution on a sample space, which
is just a measure space where the measure of the

entire space is 1. When the total measure is 1, the
measure is also called a probability distribution.

Definition. A probability distribution P on a set Ω,
called the sample space consists of

• a collection of subsets of Ω, each subset called
an event, so that the collection is closed under
countably many set operations (union, inter-
section, and complement),

• for each event E, a real number P (E), called
the probability of E, with 0 ≤ P (E) ≤ 1, such
that

• P (Ω) = 1, and

• P is countably additive, that is, for every
countable set of pairwise disjoint events {Ei},

P

(⋃
i

Ei

)
=
∑
i

P (Ei)

The requirement that the sets be closed under
countably many set operations is that given count-
ably many events, their union and intersection are
also events; also the complement of an event is an
event.

The term pairwise disjoint in the last item means
that Ei ∩ Ej = ∅ for all i 6= j.

The last condition applies to any countable num-
ber of events, even 2. In that case it says that
if E and F are disjoint events, then P (E ∪ F ) =
P (E) + P (F ).

This definition extends the definition for discrete
probability distributions given above, and it allows
for continuous probabilities. Although there are
technical aspects to this definition, since this is just
an introduction to probability, we won’t dwell on
them.

Properties of probability. The definition
doesn’t list all the properties we want for proba-
bility, but we can prove what we want from what
it does list.
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For example, it doesn’t say that P (∅) = 0, but
we can show that. Since Ω and ∅ are disjoint
(the empty set is disjoint from every set), there-
fore P (Ω ∪ ∅) = P (Ω) + P (∅). But Ω ∪ ∅ = Ω, so
1 = 1 + P (∅). Thus, P (∅) = 0.

We’ll prove the following theorem in class with
the help of Venn diagrams to give us direction.

Theorem. Let Ω be a sample space for a discrete
probability distribution, and let E and F be events.

• If E ⊆ F , then P (E) ≤ P (F ).

• P (Ec) = 1− P (E) for every event E.

• P (E) = P (E ∩ F ) + P (E ∩ F c).

• P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

That last property is the principle of inclusion
and exclusion for two events. There is a version of
it for any finite number of sets. For three sets E,
F , and G, it looks like

P (E ∪ F ∪G)

= P (E) + P (F ) + P (G)

− P (E ∩ F )− P (E ∩G)− P (F ∩G)

+ P (E ∩ F ∩G)

Partitions. We can generalize the property
P (E) = P (E ∩F ) +P (E ∩F c) mentioned above in
a useful way.

A set S is said to be partitioned into subsets
A1, A2, . . . , An when each element of S belongs to
exactly one of the subsets A1, A2, . . . , An. That’s
logically equivalent to saying that S is the disjoint
union of the A1, A2, . . . , An. We’ll have that situ-
ation from time to time, and we can use it to our
advantage to compute probabilities.

If the sample space Ω is partitioned into events
A1, A2, . . . , An, and E is any event, then E is par-
titioned into E ∩A1, E ∩A2, . . . , E ∩An. Then by
the last axiom for probability, we have

P (E) = P (E ∩ A1) + P (E ∩ A2) + · · ·+ (E ∩ An).

Math 217 Home Page at http://math.clarku.

edu/~djoyce/ma217/
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