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Today we’ll prove the central limit theorem.

A proof of the central limit theorem by
means of moment generating functions. This theo-
rem says that for any distribution X with a finite
mean µ and variance σ2, the sample sum S and also
the sample meanX approach a normal distribution.
More specifically, the standardized sample sum S∗

and the standardized sample mean X
∗
, which are,

in fact, the same thing, approach the standard nor-
mal distribution.

Consider a distribution X with mean µ and vari-
ance σ2. Let X1, . . . , Xn be a sample from this dis-
tribution with sample sum Sn = X1 + · · · + Xn.
We’ll show that the standardized sum

S∗n =
Sn − nµ
σ
√
n

approaches a standard normal distribution by
showing that its moment generating function
mS∗

n
(t) approaches the moment generating function

for the standard normal distribution Z, which is
mZ(t) = et

2/2.
Last time we saw that the standardized sum S∗n

has the generating function

mS∗
n
(t) = e−

√
nµt/σ

(
mX( t

σ
√
n
)
)n

First, we can simplify things a little bit by assum-
ing that the mean µ is 0. That is, if Y = X − µ,
then the mean of Y is 0, Y has the same standard
deviation σ as X, and X and Y have the same
standardized sum. Thus, if the central limit theo-
rem holds for distributions Y with mean 0, then it
holds for distributions with any mean µ.

Thus, we assume the mean of X is µ = 0 and
continue with the proof. Likewise, we can simplify
things a little bit more by assuming that the stan-
dard deviation σ is 1. That is, if Y = X/σ, then the
mean of Y is 0, its standard deviation is 1, and X
and this Y have the same standardized sum. Thus,
if the theorem holds for distributions Y with mean
0 and standard deviation 1, then it holds for any
distribution with mean µ and standard deviation
σ.

Thus, we assume the standard deviation of X is
σ = 1 and continue with the proof.

Now, with µ = 0 and σ = 1, we have

mS∗
n
(t) =

(
mX

(
t√
n

))n

.

Note that since µ = 0, the second moment µ2 is
just the variance σ2 = 1 because in any case σ2 =
E(X2)− µ2 = µ2 − µ2. Thus µ2 = 1.

The idea of the proof is to use just the first cou-
ple of terms of the power series for the moment
generating function mX(t) because the rest of the
terms are very small. More precisely, the moment
generating function for X can be written as

mX(t) = 1 +
1

2
µ2t

2 +Rt3

= 1 +
1

2
t2 +Rt3

where Rt3 includes the remainder of the power se-
ries, that is, all the higher terms for the power se-
ries. (The existence of this power series assumes
that all higher moments exist. That assumption is
not necessary because even without a power series,
Taylor’s theorem givesa remainder term that does
the same job.)

In the expression for the generating function
mS∗

n
(t) of the standardized sample sum, we have

the expression mX

(
t√
n

)
, so we’ll analyze it next.

mX

(
t√
n

)
= 1 +

1

2

2
(

t√
n

)2

+R

(
t√
n

)3

= 1 +
t2

2n
+R

(
t√
n

)3
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The remainder term R
(

t√
n

)3

is small compared

to t2/n in the sense that as n approaches ∞, the

ratio of R
(

t√
n

)3

to t2/n approaches 0. Changing

notation slightly, we can say that

mX

(
t√
n

)
= 1 +

t2

2n
+R′

where R′ is small compared to t2/n.
Now we can analyze the generating function

mS∗
n
(t) of the standardized sample sum itself.

mS∗
n
(t) =

(
mX

(
t√
n

))n

=

(
1 +

t2

2n
+R′

)n

.

We’ll show that as n → ∞, this last expression
approaches et

2/2. The difficulty is that n appears
both as an exponent and as a denominator. The n
in the exponent suggests the limit might be∞, but
the n in the denominator suggests the limit might
be 1. It turns out to be neither.

There are various ways to proceed. We’ll take
natural logs to get

logmSn(t) = n log

(
1 +

t2

2n
+R′

)
.

For small values of x, the natural log(1+x) is about
x. Indeed,

log(1 + x) = x− x2

2
+
x3

3
− · · · .

Hence, log

(
1 +

t2

2n
+R′

)
equals

t2

2n
+R′ −

(
t2

2n
+R′

)2

2
+

(
t2

2n
+R′

)3

3
− · · · .

Since all the terms except the first are small com-
pared to t2/n (in the same sense mentioned above),
we can rewrite the expression as

t2

2n
+R′′

where R′′ is small compared to t2/n. We can now
say that

logmS∗
n
(t) =

t2

2
+ nR′′.

But R′′ is small compared to t2/n, so nR′′ is
also small compared to t2. Thus, as n → ∞,
logmS∗

n
(t)→ t2/2. Finally, exponentiating, we get

mS∗
n
(t)→ et

2/2

as n → ∞. Thus, the generation function
mS∗

n
(t) for S∗n approaches the generating func-

tion et
2/2 of the standard normal distribution.

Hence, S∗n approaches the standard normal distri-
bution. q.e.d.
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