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We’ll need to count some things in probability. The mathematics of counting is called combi-
natorics. Actually, combinatorics doesn’t really involve counting, but finding out how many
things there are without counting. We won’t need much except the most introductory topics
from the field.

We'll look at additive and multiplicative principles, permutations, combinations, binomial
coefficients and Pascal’s triangle, and multinomial coefficients.

Additive principles. The basic additive principle you’ve known since you first learned
addition. If you have so many of these and those, and none of these are those, then you can
find out how many of these and those you have altogether by adding them.

Let’s introduce some notation and terminology. If S is a set, then we’ll call the number
of elements it has its cardinality, and we’ll denote it’s cardinality with absolute value signs.
Thus, if S = {a,b, c}, then the cardinality of S is 3, written |S| = 3.

The basic additive principle says that if S and T' are disjoint sets, that is to say, their
intersection is empty, S NT = (), then the cardinality of their union is the sum of their
cardinalities. |[SUT| = |S|+ [T

But what if S and T aren’t disjoint? You can’t use that formula since you would count
elements in the intersection twice. That’s easy to fix. Just subtract the cardinality of their
intersection.

The principle of inclusion and exclusion. That’s what that last observation is called.
For any two sets S and T, it is the case that |[SUT| = |S|+ |T| — |S NT|. You include S
and 7', then exclude their intersection.

This principle works for probability, too. Here’s an example. A standard deck of cards has
52 cards with 13 cards in each suit. If you draw one at random you have the same probability
of drawing any one of the 52 cards. This is uniform probability where each outcome has a
probability of 5% Since there are 13 spades, the probability of drawing a spade is P(S) =
% = }l. Also, since there are 4 tens, the probability of drawing a ten is P(T") = % = 1—13 Now,
what’s the probability of drawing a space or a ten. It’s not P(S) + P(T) since that counts
the ten of spades twice. It's P(SUT) = P(S)+P(T)—P(SNT) =B+ 5 — &5 =18 = 4.

The principle of inclusion and exclusion extends to more than two sets. Suppose you have
three sets S, T', and U. What’s the cardinality of their union SUT U U? You can start by
summing |S| + |T'| + |U], but, as before that counts their intersections twice. So subtract
the three intersections, —|SNT| — |SNU| — |T'NU|. But now you've subtracted the triple
intersection SNT'NU three times. It was added three times in the initial sum, so now it’s not

counted at all. That’s easy to fix. Just add the cardinality of the triple intersection. Thus

ISUTUU|=|S|+|T|+|U|l—|SNT|—|SNnU|—|TNU|+|SNTNU|.
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Summary: to find the cardinality of a triple union, add the cardinality of each set, subtract
the cardinalities of the double intersections, and add the cardinality of the triple intersection.
That last formula generalizes. If you have n sets, you keep adding and subtraction multiple
intersections until you add or subtract the intersection of all n sets. Here’s a formula that
summarizes that.
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The multiplicative principle. The basic multiplicative principle says that if you have m
choices, and for each choice you have n second choices (and all the second choices for one of
the first choices differs from all the second choices for any of the other first choices), then
altogether you have mn choices.

One situation in which this occurs is when you take the cartesian product of two sets S
and T'. The cartesian product S x T' consists of all ordered pairs (s,t) where s € Sandt € T
Then |S x T'| = |S||T|. In most of our applications, however, what the second choices are
depend on the first choice you make, so we’re not looking at just cartesian products of sets.

The multiplicative principle also works when there are more than two stages. For example,
if there are three stages with m choices at the first stage, n at the second, and p at the third,
then there are mnp altogether.

Permutations. One of the primary applications of the multiplicative principle is counting
permutations. Suppose we want to count all the ways you can rearrange the letters in
ROFL. There are a lot of them such as FROL, OLFR, etc. These rearrangements are called
permutations. When choosing a permutation of ROFL, you have 4 choices for the first letter,
3 remaining choices for the second (since we can’t choose the first letter again), 2 remaining
choices for the third, and then the fourth is forced on us. Thus there are 4-3-2 -1 = 24
choices altogether.

We'll be using tree diagrams a lot in this course, and here’s a good place to introduce
them. When choosing a permutation of the four letters abed there are four stages. The first
stage chooses one of the four letters to go first. That gives us our first branching of the tree
at the left. After we’ve taken that branch, we’ll be at one of the four nodes or states labelled
a, b, ¢, or d. At this second stage, we choose a second letter that can’t be the same as the
first. In each case we have three choices this time, so we’ll take one of the three branches to
get to a state labelled by two letters. At the third stage, we've got two choices, so for each



state there are two branches leading to a state labelled with three letters. At this state the
last letter is determined, so there’s only one branch to a leaf of the tree.

abc —— abed
ab — abd — abde

acb ——— acbd
ac < acd ——— acdb
ad adb —— adbce

— adc ——— adceb

bac —— bacd
bo —— bad — badc

bca ——— bcac

be — ped — beda
bd bda ———— bdac
— bde ——— bdca
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ca — cad ——— cadb
cba ——— cbad
b =" i cbda

cd cdab

cda ———
— cdb cdba
dab ———— dabc
da — dac ——— dacb

dba ——— dbac
db """ e — dbea

de dcab

dea ——
— dcb ——— dcba

With a tree diagram like this you can visually see how the multiplication principle increases
the number of states at each stage by a factor equal to the number of braches at each state.

In general, there will be n factorial permutations of n things where n factorial, written
n!, is the product of the integers from 1 though n. It’s also useful to define 0! to be 1 in order
to make things easier to say when factorials are involved.

For probability, that’s about all we need to know about permutations although sometimes
variants come up. Here’s one. Say you want to count the permutations of ROFLCOPTER.
The two R’s can’t be distinguished, so exchanging them shouldn’t count as a different per-
mutation. If we said that there are 10! permutations, we would be doubly counting them
because the R’s aren’t distinguishable. There are two O’s, too, so the actual number of
distinguishable permutations is 10! divided by 4.

Likewise, when you're counting distinguishable permutations of MISSISSIPPI, you’ll need
to divide 11! by 4! because of the repeated I's, 4! because of the repeated S’s, and 2! because
of the repeated P’s.

Sterling’s approximation for factorials. Sometimes you’ll need to compute factorials
of large numbers. Sterling’s approximation helps. The factorial function n! grows very fast
with n. James Sterling (1692-1770) this approximation for factorials:

n! =~ n"e "V2mn




This approximation is fairly good even for numbers as small as 10 where the approximation
has an error of less than 1%. It’s accuracy increases with n.

n n! approx ratio
1 0.922137 1.084
2 2 1.91900 1.042
3 6 5.83621 1.028
4 24 23.5062 1.021
5
6
7
8

—_

120 118.019 1.016

720 710.078 1.014

5040 4980.40 1.012

40320 39902.4 1.011
9 362880 359536 1.0093
10 3628800 3598690 1.0084
11 39916800 39615600 1.0076
12479001600 475687000 1.0070

k-permutations. The permutations discussed above are full permutations of all n items.
Sometimes we don’t want full permutations of a set of n elements, but just partial permuta-
tions. If k& < n, a k-permutation is an ordered listing of just k elements of a set of n elements.
For instance, the 3-permutations of abcd are these

abc bac cab dab
abd bad cad dac
acb beca cba dba
acd bed cbd dbe
adb bda cda dca
adc bdec cdb dcb

while the 2-permutations are these

ab ba ca da
ac be c¢cb db
ad bd cd dc

We can determine how many k-permutations of a set of n elements there are using the
multiplicative principle. In the first stage, choose one of the n elements to go first. In the
second stage, there are n — 1 remaining elements, and choose one of them to go second. At
the next stage, chose one of the remaining n — 2 elements to go next. And so forth until the
kth stage, when there are n — k+ 1 remaining elements. Thus, the number of k-permutations
of a set of n elements is

n(n—l)(n—2)~--(n—k+1)=(n_k)!.

There is no particular standard notation for the number of k-permutations of a set of n
elements, but you'll see it denoted (n)g, nPk, P}, and various other things. We'll just use
n!/(n — k)! as we won’t be using k-permutations very much.
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We’ll continue next time with a discussion of binomial coefficients, which count combina-
tions, the binomial theorem, Pascal’s triangle, and multinomial coefficients.

Math 217 Home Page at http://math.clarku.edu/~djoyce/ma217/
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