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The rare disease Xox. This example also has
to do with the general question of evidence.

Suppose you have a medical exam and part of
that exam includes a blood test. Your blood sam-
ple is sent to a lab that checks for a whole slew of
things. The lab finds your blood sample tests pos-
itive for a rare disease Xox. Your doctor tells you
the results and tries to assure you not to be too
worried about it until the disease is confirmed. But
you find out that (1) this is a pretty rare disease in
that only 1 in 1000 people have Xox; and (2) the
lab is pretty accurate—it’s only wrong in 1 of 1000
lab tests for Xox, that is to say, if a person doesn’t
have Xox, the lab test will be negative 999 times
out of 1000, and if a person does have Xox, the lab
test will be positive 999 times out of 1000. Are you
worried that you have Xox?

We'll discuss this in class, and if we don’t come
to a conclusion, we’ll revisit it later.

Conditional probability. The idea. We'll
look at a couple of examples. We'll try to figure
out what “the probability that event I’ occurs given
that event £ has occurred.” We’ll pronounce that
more briefly as “the probability of F' given E,” and
write it P(F|E).

A uniform discrete example. Let’s start with
a uniform discrete probability distribution to see
what’s going on. Let’s toss two fair dice, a red one
and a green one. For this situation, the sample
space €2 has 36 outcomes, each outcome being an
ordered pair of numbers, the first being what the
red die shows, the second what the green die shows.

Suppose someone tosses the dice and tells you
that their sum is 6. We can ask, now, what the
probability is that one of the dice came up 4.

Here, E is the event that the sum is 6, and F
is the event that one of the dice came a 4. With-
out knowing that E has occurred, we would say
the probability that one die shows 4 is %, since
there are 11 of the 36 outcomes with at least one
of the dice showing 4. Thus, P(F) = 4. But
that’s not the question here. We need to figure
out P(F|E). Since E has occurred, our new sam-
ple space isn’t the old sample space () that has 36
elements. Instead, our new sample space is the sub-

space I which has only 5 outcomes in it:

E={(51),(4,2),(3,3),(2,4),(1,5) }.

Now, inside this sample space, we want to know
how many outcomes belong to F. Those will be
the outcomes in the intersection £ N F. There are
two such outcomes

ENF={(4,2),(2.4)}

Since the original 36 outcomes were equally prob-
able, now that we’ve restricted our attention to F,
the 5 outcomes in E are equally probable. Since
two of these are in ENF, we conclude that P(F|E)
equals %

Although we computed this conditional proba-
bility by taking the ratio of outcomes in £ N F
|[ENF|

|E|

, we could have

P(ENF)

to outcomes in F, that is,

taken the ratio of their probabilities and

P(E)
gotten the same number. It’s this last formulation
P(ENF)
P(F|E)= ————~
(FIE) ="

that generalizes to situations besides uniform dis-
crete probabilities.

A nonuniform discrete example. A Bernoulli
trial has one of two outcomes, one we’ll call success,
and the other failure. The probabilities of success
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and failure are assumed to be 1/2 but could be any
fixed probability. We'll use p to denote the proba-
bility of success and ¢ = 1 — p to be the probability
of failure.

For this example, let’s take a sequence of 6
Bernoulli trials, each with probability p of success.
The sample space Q has 26 = 64 outcomes, but
they’re not all equally probable. The probability of
a particular outcome that contains k& successes and
6 — k failures is pFq®*.

Suppose that the first trial is a success. We can
ask, then, what the probability that there are 4
successes in all.

Here, the event E is that the first outcome is suc-
cess. The event F' is that exactly 4 of the 6 trials
are successes. We want to know P(F|E), the prob-
ability that exactly 4 of the 6 trials are successes
given that the first is.

To answer this question, we change from the orig-
inal sample space 2 to the subspace E. Since this
involves nonuniform probabilities, we can’t simply
count outcomes like we did in the last example.
Before we go on, we have to decide how to assign
probabilities to the outcomes in £ when FE is the
whole sample space, rather than just an event in
). The problem is, that as an event in €2, F only
has a probability of p (since the probability that
the first trial is a success is p). But when E is the
entire probability space we need that probability to
change to 1. In other words, we need to scale up the
probabilities. We can do that by multiplying them
by 1/p, that is, dividing them by p. Then the new
probability of E will be p/p = 1. We'll scale up the
probabilities of all the outcomes in E as well.

So, what does that do in this example. We want
to know the probability of F' given F, and that
should be the scaled up probability for the event
ENF as an event in the new sample space E. The
probability of ENF as an event in 2 was P(ENF),
but we need to divide that by p to scale up its
probability as an event of E. Therefore P(F|E)
equals P(E N F)/p. Let’s see what that value is.
The event E'N F' is when the first trial is a success
and there are exactly 4 trials among the 6 trials.

That’s the same as saying the first trial is a success
and there are exactly 3 trials among the remaining
5 trials. Therefore,

P(ENF) = p(g)ﬁf.

Thus, the conditional probability is
P(ENF)

_ 5 3 2
P _(3)]”]'

This conclusion makes sense because, of course,
the probability that exactly 4 of 6 are successes
given the first was a success should be the same as
the probability that exactly 3 of 5 are successes.

P(F|E) =

Conditional probability. The formal defini-
tion. Solong as P(E) is not 0, we define the con-
ditional probability

P(FNE)

P(FIE) = — 5

If P(E) does equal 0, then we won’t define
the conditional probability P(F|E). (There are
some circumstances with continuous probabilities
where P(F|E) can be defined somehow even when
P(E) =0, but it isn’t done through this definition.)

The multiplication rule. In many situations in
order to find the probability of an intersection of
events, it’s easier to break it down into steps and
find the conditional probabilities for each step. The
definition of conditional probability yields this iden-
tity for the intersection of two events

P(ENF) = P(F|E)P(E)

which generalizes to the intersection of three events
or more

P(ENFNG) = P(G|ENF)P(F|E) P(E).
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