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Today we’ll look at expectation and variance for
continuous random variables. We’ll see most every-
thing is the same for continuous random variables
as for discrete random variables except integrals are
used instead of summations.

Expectation for continuous random vari-
ables. Recall that for a discrete random variable
X, the expectation, also called the expected value
and the mean was defined as

µ = E(X) =
∑
x∈Sx

P (X = x).

For a continuous random variable X, we now define
the expectation, also called the expected value and
the mean to be

µ = E(X) =

∫ ∞
−∞

xf(x) dx,

where f(x) is the probability density function for
X. If f(x) is 0 outside an interval [a, b], then the
integral is the same as

µ = E(X) =

∫ b

a

xf(x) dx.

When f(x) takes nonzero values on all of R, then
the limits of integration have to be

∫∞
−∞, and this is

an improper integral. An improper integral of this
form is defined as a sum of two improper integrals∫ 0

−∞
xf(x) dx+

∫ ∞
0

xf(x) dx,

and both have to be finite for the integral
∫∞
−∞ to

exist. Improper integrals with infinite limits of in-
tegration can be evaluated by taking limits. For
example,∫ ∞

0

xf(x) dx = lim
b→∞

∫ b

0

xf(x) dx.

The value of the integral
∫∞
−∞ xf(x) dx can be in-

terpreted as the x-coordinate of the center of grav-
ity of the plane region between the x-axis and the
curve y = f(x). It is the point on the x-axis where
that region will balance. You may have studied
centers of gravity when you took calculus.

Properties of expectation for continuous ran-
dom variables. They are the same as those for
discrete random variables.

First of all, expectation is linear. If X and Y are
two variables, independent or not, then

E(X + Y ) = E(X) + E(Y ).

If c is a constant, then

E(cX) = cE(X).

Linearity of expectation follows from linearity of
integration.

Next, if Y is a function of X, Y = φ(X), then

E(Y ) = E(φ(X)) =

∫ ∞
−∞

φ(x)f(x) dx.

Next, if X and Y are independent random vari-
ables, then

E(XY ) = E(X)E(Y ).

The proof isn’t hard, but it depends on some con-
cepts we haven’t discussed yet. I’ll record it here
and we’ll look at it again after we’ve discussed joint
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distributions.

E(XY ) =

∫ ∞
x→−∞

∫ ∞
y→−∞

xyfXY (x, y) dy dx

=

∫ ∞
−∞

∫ ∞
−∞

xyfX(x)fY (y) dy dx

=

∫ ∞
−∞

xfX(x)

∫ ∞
−∞

yfY (y) dy dx

=

∫ ∞
−∞

yfY (y) dy

∫ ∞
−∞

xfX(x) dx

= E(Y )E(X)

Variance and standard deviation for continu-
ous random variables. When we discussed vari-
ance σ2 = Var(X) for discrete random variables, it
was defined in terms of expectation, so we can use
the exact same definition and the same results hold.

σ2 = Var(X) = E((X − µ)2) = E(X2)− µ2

Var(cX) = c2 Var(X)

Var(X + c) = Var(X)

If X and Y are independent random variables, then

Var(X + Y ) = Var(X) + Var(Y ).

The proof of that last result depends on joint dis-
tributions, so we’ll put it off until later.

Of course, standard deviation is still defined as
the square root of variance.

The mean and variance of a uniform contin-
uous random variable. We’ll work this out as
an example, the easiest one to do.

Let X be uniform on the interval [a, b]. Then

f(x) =
1

b− a
for x ∈ [a, b].

The mean of X is

µ = E(X) =

∫ b

a

x
1

b− a
dx

=
1

2(b− a)
x2
∣∣∣∣b
a

=
b2 − a2

2(b− a)

= 1
2
(a+ b)

Thus, the mean is just where we expect it to be,
right in the middle of the interval [a, b].

For the variance of X, let’s use the formula
Var(X) = E(X2) − µ2, so we’ll need to compute
E(X2).

E(X2) =

∫ b

a

x2
1

b− a
dx

=
1

3(b− a)
x3
∣∣∣∣b
a

=
b3 − a3

3(b− a)

= 1
3
(a2 + ab+ b2)

Therefore, the variance is

Var(X) = E(X2)− µ2

= 1
3
(a2 + ab+ b2)− 1

4
(a+ b)2

= 1
12

(b− a)2

Since the variance is σ2 = 1
12

(b− a)2, therefore the

standard deviation is σ = (b− a)/
√

12.

The mean and variance of an exponential dis-
tribution. For a second example, let X be expo-
nentially distributed with parameter λ so that the
probability density function is f(x) = λe−λx.

The mean is defined as

µ = E(X) =

∫ ∞
0

xλe−λx dx.

Using integration by parts or tables, you can show
that ∫

λxe−λx dx = −xe−λx − 1
λ
e−λx,

so, when we evaluate that from 0 to ∞, we get
(−0 − 0) − (−0 − 1

λ
) = 1

λ
. Thus, the mean is µ =

1
λ
. Thus, the expected time to the next event in

a Poisson process is the reciprocal of the rate of
events.

Now for the variance σ2. Let’s compute E(X2).

That’s E(X2) =

∫ ∞
0

x2λe−λx dx. Using integration
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by parts twice or tables, you can show that∫
λx2e−λx dx = −x2e−λx − 1

λ
2xe−λx − 1

λ2
2e−λx,

and that evaluates from 0 to∞ as 2/λ2. Therefore,
the variance is

σ2 = E(X2)− µ2 =
2

λ2
− 1

λ2
=

1

λ2
.

The lack of a mean and variance for a Cauchy
distribution. Not every distribution has a mean
and variance. We’ll see in a minute that the Cauchy
distribution doesn’t. There are also distributions
that have means but not variances, or, you could
say, their variances are infinite. The Central Limit
Theorem will require that the distribution in ques-
tion does have both a mean and variance.

Let’s try to compute the mean of a Cauchy dis-
tribution and see what goes wrong. It’s density is

f(x) =
1

π(1 + x2)
for x ∈ R. So its mean should

be

µ = E(X) =

∫ ∞
−∞

x dx

π(1 + x2)

In order for this improper integral to exist, we need
both integrals

∫ 0

−∞ and
∫∞
0

to be finite. Let’s look
at the second integral.∫ ∞

0

x dx

π(1 + x2)
=

1

2π
log(1 + x2)

∣∣∣∣∞
0

=∞

Similarly, the other integral,
∫ 0

−∞, is −∞. Since

they’re not both finite, the integral
∫∞
−∞ doesn’t

exist. In other words ∞−∞ is not a number.
Thus, the Cauchy distribution has no mean.

What this means in practice is that if you take a
sample x1, x2, . . . , xn from the Cauchy distribution,
then the average x does not tend to a particular
number. Instead, every so often you will get such a
huge number, either positive or negative, that the
average is overwhelmed by it.

A computation of its variance of a Cauchy distri-
bution shows that’s infinite, too.

Math 217 Home Page at http://math.clarku.

edu/~djoyce/ma217/
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