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1 Introduction.

I summarize here some of the more common distributions used in probability and statistics.
Some are more important than others, and not all of them are used in all fields.

I’ve identified four sources of these distributions, although there are more than these.

• the uniform distributions, either discrete Uniform(n), or continuous Uniform(a, b).

• those that come from the Bernoulli process or sampling with or without replace-
ment: Bernoulli(p), Binomial(n, p), Geometric(p), NegativeBinomial(p, r),
and Hypergeometric(N,M, n).

• those that come from the Poisson process: Poisson(λ, t), Exponential(λ),
Gamma(λ, r), and Beta(α, β).

• those related to the Central Limit Theorem: Normal(µ, σ2), ChiSquared(ν), T(ν),
and F(ν1, ν2).

For each distribution, I give the name of the distribution along with one or two parameters
and indicate whether it is a discrete distribution or a continuous one. Then I describe an
example interpretation for a random variable X having that distribution. Each discrete
distribution is determined by a probability mass function f which gives the probabilities for
the various outcomes, so that f(x) = P (X=x), the probability that a random variable X
with that distribution takes on the value x. Each continuous distribution is determined by a
probability density function f , which, when integrated from a to b gives you the probability
P (a ≤ X ≤ b). Next, I list the mean µ = E(X) and variance σ2 = E((X−µ)2) = E(X2)−µ2

for the distribution, and for most of the distributions I include the moment generating function
m(t) = E(X t). Finally, I indicate how some of the distributions may be used.

1.1 Background on gamma and beta functions.

Some of the functions below are described in terms of the gamma and beta functions. These
are, in some sense, continuous versions of the factorial function n! and binomial coefficients(
n

k

)
, as described below.

The gamma function, Γ(x), is defined for any real number x, except for 0 and negative
integers, by the integral

Γ(x) =

∫ ∞
0

tx−1e−t dt.
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The Γ function generalizes the factorial function in the sense that when x is a positive integer,
Γ(x) = (x− 1)!. This follows from the recursion formula, Γ(x+ 1) = xΓ(x), and the fact that
Γ(1) = 1, both of which can be easily proved by methods of calculus.

The values of the Γ function at half integers are important for some of the distributions
mentioned below. A bit of clever work shows that Γ(1

2
) =
√
π, so by the recursion formula,

Γ
(
n+ 1

2

)
=

(2n− 1)(2n− 3) · · · 3 · 1
2n

√
π.

The beta function, B(α, β), is a function of two positive real arguments. Like the Γ
function, it is defined by an integral, but it can also be defined in terms of the Γ function

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α + β)
.

The beta function is related to binomial coefficients, for when α and β are positive integers,

B(α, β) =
(α− 1)!(β − 1)!

(α + β − 1)!
.

2 The uniform distributions

Uniform distributions come in two kinds, discrete and continuous. They share the property
that all possible values are equally likely.

2.1 Discrete uniform distribution.

Uniform(n). Discrete.
In general, a discrete uniform random variable X can take any finite set as values, but

here I only consider the case when X takes on integer values from 1 to n, where the parameter
n is a positive integer. Each value has the same probability, namely 1/n.

Uniform(n)
f(x) = 1/n, for x = 1, 2, . . . , n

µ =
n+ 1

2
. σ2 =

n2 − 1

12

m(t) =
1− e(n+1)t

1− et

Example. A typical example is tossing a fair cubic die. n = 6, µ = 3.5, and σ2 = 35
12

.

2.2 Continuous uniform distribution.

Uniform(a, b). Continuous.
In general, a continuous uniform variable X takes values on a curve, surface, or higher

dimensional region, but here I only consider the case when X takes values in an interval [a, b].
Being uniform, the probability that X lies in a subinterval is proportional to the length of
that subinterval.
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Uniform(a, b)

f(x) =
1

b− a
, for x ∈ [a, b]

µ =
a+ b

2
. σ2 =

(b− a)2

12

m(t) =
ebt − eat

t(b− a)

Example. An example of an approximately uniform distribution on the interval [−1
2
, 1
2
] is

the roundoff error when rounding to the nearest integer. This assumes that the distribution
of numbers being rounded off is fairly smooth and stretches over several integers.

Note. Most computer programming languages have a built in pseudorandom number gen-
erator which generates numbers X in the unit interval [0, 1]. Random number generators for
any other distribution can then computed by applying the inverse of the cumulative distri-
bution function for that distribution to X.

3 The Bernoulli process and sampling with or without

replacement

A single trial for a Bernoulli process, called a Bernoulli trial, ends with one of two outcomes,
one often called success, the other called failure. Success occurs with probability p while
failure occurs with probability 1− p, usually denoted q.

The Bernoulli process consists of repeated independent Bernoulli trials with the same
parameter p. These trials form a random sample from the Bernoulli population.

You can ask various questions about a Bernoulli process, and the answers to these ques-
tions have various distributions. If you ask how many successes there will be among n
Bernoulli trials, then the answer will have a binomial distribution, Binomial(n, p). The
Bernoulli distribution, Bernoulli(p), simply says whether one trial is a success. If you ask
how many trials it will be to get the first success, then the answer will have a geometric
distribution, Geometric(p). If you ask how many trials there will be to get the rth suc-
cess, then the answer will have a negative binomial distribution, NegativeBinomial(p, r).
Given that there are M successes among N trials, if you ask how many of the first n trials
are successes, then the answer will have a Hypergeometric(N,M, n) distribution.

Sampling with replacement is described below under the binomial distribution, while
sampling without replacement is described under the hypergeometric distribution.

3.1 Bernoulli distribution.

Bernoulli(p). Discrete.
The parameter p is a real number between 0 and 1. The random variable X takes on two

values: 1 (success) or 0 (failure). The probability of success, P (X=1), is the parameter p.
The symbol q is often used for 1− p, the probability of failure, P (X=0).
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Bernoulli(p)
f(0) = 1− p, f(1) = p

µ = p. σ2 = p(1− p) = pq
m(t) = pet + q

Example. If you flip a fair coin, then p = 1
2
, µ = p = 1

2
, and σ2 = 1

4
.

3.2 Binomial distribution.

Binomial(n, p). Discrete.
Here, X is the sum of n independent Bernoulli trials, each Bernoulli(p), so X = x means

there were x successes among the n trials. (Note that the Bernoulli(p) = Binomial(1, p).)

Binomial(n, p)

f(x) =

(
n

x

)
px(1− p)n−x, for x = 0, 1, . . . , n

µ = np. σ2 = np(1− p) = npq
m(t) = (pet + q)n

Sampling with replacement. Sampling with replacement occurs when a set ofN elements
has a subset of M “preferred” elements, and n elements are chosen at random, but the n
elements don’t have to be distinct. In other words, after one element is chosen, it’s put
back in the set so it can be chosen again. Selecting a preferred element is success, and that
happens with probability p = M/N , while selecting a nonpreferred element is failure, and
that happens with probability q = 1− p = (N −M)/N . Thus, sampling with replacement is
a Bernoulli process.

A bit of history. The first serious development in the theory of probability was in the
1650s when Pascal and Fermat investigated the binomial distribution in the special case
p = 1

2
. Pascal published the resulting theory of binomial coefficients and properties of what

we now call Pascal’s triangle.
In the very early 1700s Jacob Bernoulli extended these results to general values of p.

3.3 Geometric distribution.

Geometric(p). Discrete.
When independent Bernoulli trials are repeated, each with probability p of success, the

number of trials X it takes to get the first success has a geometric distribution.

Geometric(p)
f(x) = qx−1p, for x = 1, 2, . . .

µ =
1

p
. σ2 =

1− p
p2

m(t) =
pet

1− qet
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3.4 Negative binomial distribution.

NegativeBinomial(p, r). Discrete.
When independent Bernoulli trials are repeated, each with probability p of success, and

X is the trial number when r successes are first achieved, then X has a negative binomial
distribution. Note that Geometric(p) = NegativeBinomial(p, 1).

NegativeBinomial(p, r)

f(x) =

(
x− 1

r − 1

)
prqx−r, for x = r, r + 1, . . .

µ =
r

p
. σ2 =

rq

p2

m(t) =

(
pet

1− qet

)r

3.5 Hypergeometric distribution.

Hypergeometric(N,M, n). Discrete.
In a Bernoulli process, given that there are M successes among N trials, the number X

of successes among the first n trials has a Hypergeometric(N,M, n) distribution.

Hypergeometric(N,M, n)

f(x) =

(
M
x

)(
N−M
n−x

)(
N
n

) , for x = 0, 1, . . . , n

µ = np. σ2 =

(
N − n
N − 1

)
npq

Sampling without replacement. Sampling with replacement was mentioned above in
the section on the binomial distribution. Sampling without replacement is similar, but once
an element is selected from a set, it is taken out of the set so that it can’t be selected again.

Formally, we have a set of N elements with a subset of M “preferred” elements, and n
distinct elements among the N elements are to be chosen at random. The symbol p is often
used for the probability of choosing a preferred element, that is, p = M/N , and q = 1−p. The
hypergeometric distribution, described below, answersthe question: of the n chosen elements,
how many are preferred?

When n is a small fraction of N , then sampling without replacement is almost the same
as sampling with replacement, and the hypergeometric distribution is almost a binomial
distribution.

Many surveys have questions with only two responses, such as yes/no, for/against, or
candidate A/B. These are actually sampling without replacement because the same person
won’t be asked to respond to the survey twice. But since only a small portion of the population
will respond, the analysis of surveys can be treated as sampling with replacement rather than
sampling without replacement (which it actually is).
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4 The Poisson process

A Poisson process is the continuous version of a Bernoulli process. In a Bernoulli process,
time is discrete, and at each time unit there is a certain probability p that success occurs,
the same probability at any given time, and the events at one time instant are independent
of the events at other time instants.

In a Poisson process, time is continuous, and there is a certain rate λ of events occurring
per unit time that is the same for any time interval, and events occur independently of each
other. Whereas in a Bernoulli process either no or one event occurs in a unit time interval,
in a Poisson process any nonnegative whole number of events can occur in unit time.

As in a Bernoulli process, you can ask various questions about a Poisson process, and
the answers will have various distributions. If you ask how many events occur in an inter-
val of length t, then the answer will have a Poisson distribution, Poisson(λt). If you ask
how long until the first event occurs, then the answer will have an exponential distribution,
Exponential(λ). If you ask how long until the rth event, then the answer will have a
gamma distribution, Gamma(λ, r). If there are α + β events in a given time interval, if you
ask what fraction of the interval it takes until the αth event occurs, then the answer will have
a Beta(α, β) distribution.

4.1 Poisson distribution.

Poisson(λt). Discrete.
When events occur uniformly at random over time at a rate of λ events per unit time,

then the random variable X giving the number of events in a time interval of length t has a
Poisson distribution.

Often the Poisson distribution is given just with the parameter λ, but I find it useful to
incorporate lengths of time t other than requiring that t = 1.

Poisson(λt)

f(x) =
1

x!
(λt)xe−λt, for x = 0, 1, . . .

µ = λt. σ2 = λt

m(s) = eλt(e
s−1)

4.2 Exponential distribution.

Exponential(λ). Continuous.
When events occur uniformly at random over time at a rate of λ events per unit time,

then the random variable X giving the time to the first event has an exponential distribution.

Exponential(λ)
f(x) = λe−λx, for x ∈ [0,∞)

µ = 1/λ. σ2 = 1/λ2

m(t) = (1− t/λ)−1
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4.3 Gamma distribution.

Gamma(λ, r) or Gamma(α, β). Continuous.
In the same Poisson process for the exponential distribution, the gamma distribution gives

the time to the rth event. Thus, Exponential(λ) = Gamma(λ, 1).
The gamma distribution also has applications when r is not an integer. For that generality

the factorial function is replaced by the gamma function, Γ(x), described above.
There is an alternate parameterization Gamma(α, β) of the family of gamma distribu-

tions. The connection is α = r, and β = 1/λ which is the expected time to the first event in
a Poisson process.

Gamma(λ, r)

f(x) =
1

Γ(r)
λrxr−1e−λx =

xα−1e−x/β

βαΓ(α)
, for x ∈ [0,∞)

µ = r/λ = αβ. σ2 = r/λ2 = αβ2

m(t) = (1− t/λ)−r = (1− βt)−α

Application to Bayesian statistics. Gamma distributions are used in Bayesian statistics
as conjugate priors for the distributions in the Poisson process. In Gamma(α, β), α counts
the number of occurrences observe while β keeps track of the elapsed time.

4.4 Beta distribution.

Beta(α, β). Continuous.
In a Poisson process, if α + β events occur in a time interval, then the fraction of that

interval until the αth event occurs has a Beta(α, β) distribution.
Note that Beta(1, 1) = Uniform(0, 1).
In the following formula, B(α, β) is the beta function described above.

Beta(α, β)

f(x) =
1

B(α, β)
xα−1(1− x)β−1, for x ∈ [0, 1]

µ =
αβ

(α + β)2(α + β + 1)
. σ2 =

αβ

(α + β)2(α + β + 1)

Application to Bayesian statistics. Beta distributions are used in Bayesian statistics
as conjugate priors for the distributions in the Bernoulli process. Indeed, that’s just what
Thomas Bayes (1702–1761) did. In Beta(α, β), α counts the number of successes observed
while β keeps track of the failures observed.

5 Distributions related to the central limit theorem

The Central Limit Theorem says sample means and sample sums approach normal distribu-
tions as the sample size approaches infinity.
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5.1 Normal distribution.

Normal(µ, σ2). Continuous.
The normal distribution, also called the Gaussian distribution, is ubiquitous in probability

and statistics.
The parameters µ and σ2 are real numbers, σ2 being positive with positive square root σ.

Normal(µ, σ2)

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, for x ∈ R

µ = µ. σ2 = σ2

m(t) = exp(µt+ t2σ2/2)

The standard normal distribution has µ = 0 and σ2 = 1. Thus, its density function is

f(x) =
1√
2π
e−x

2/2, and its moment generating function is m(t) = et
2/2.

Applications. Normal distributions are used in statistics to make inferences about the
population mean when the sample size n is large.

Application to Bayesian statistics. Normal distributions are used in Bayesian statistics
as conjugate priors for the family of normal distributions with a known variance.

5.2 χ2-distribution.

ChiSquared(ν). Continuous.
The parameter ν, the number of “degrees of freedom,” is a positive integer. I generally

use this Greek letter nu for degrees of freedom. This is the distribution for the sum of the
squares of ν independent standard normal distributions.

A χ2-distribution is actually a special case of a gamma distribution with a fractional value
for r. ChiSquared(ν) = Gamma(λ, r) where λ = 1

2
and r = ν

2
.

ChiSquared(ν)

f(x) =
xν/2−1ex/2

2ν/2Γ(ν/2)
, for x ≥ 0

µ = ν. σ2 = 2ν

m(t) = (1− 2t)ν/2

Applications. χ2-distributions are used in statistics to make inferences on the population
variance when the population is assumed to be normally distributed.

5.3 Student’s T -distribution.

T(ν). Continuous.
If Y is Normal(0, 1) and Z is ChiSquared(ν) and independent of Y , thenX = Y/

√
Z/ν

has a T -distribution with ν degrees of freedom.
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T(ν)

f(x) =
Γ(ν+1

2
)

√
πν Γ(ν

2
) (1 + x2/ν)(ν+1)/2

, for x ∈ R

µ = 0. σ2 =
ν

ν − 2
, when ν > 2

Applications. T -distributions are used in statistics to make inferences on the population
variance when the population is assumed to be normally distributed, especially when the
population is small.

5.4 Snedecor-Fisher’s F -distribution.

F(ν1, ν2). Continuous.
If Y and Z are independent χ2-random variables with ν1 and ν2 degrees of freedom,

respectively, then X =
Y/ν1
Z/ν2

has an F -distribution with (ν1, ν2) degrees of freedom.

Note that if X is T(ν), then X2 is F(1, ν).

F(ν1, ν2)

f(x) =
1

B(ν1
2
, ν2

2
)

(ν1
ν2

)ν1/2xν1/2−1

(1 + ν1
ν2
x)(ν1+ν2)/2

, for x > 0

µ =
ν2

ν2 − 2
, when ν2 > 2. σ2 =

2ν22(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
, when ν2 > 4

Applications. F -distributions are used in statistics when comparing variances of two pop-
ulations.
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Table of Discrete and Continuous distributions

Distribution Type Mass/density function f(x) Mean µ Variance σ2

Uniform(n) D 1/n, for x = 1, 2, . . . , n (n+ 1)/2 (n2 − 1)/12

Uniform(a, b) C
1

b− a
, for x ∈ [a, b]

a+ b

2

(b− a)2

12
Bernoulli(p) D f(0) = 1− p, f(1) = p p p(1− p)
Binomial(n, p) D

(
n
x

)
px(1− p)n−x, np npq

for x = 0, 1, . . . , n
Geometric(p) D qx−1p, for x = 1, 2, . . . 1/p (1− p)/p2
NegativeBinomial(p,r) D

(
x−1
r−1

)
prqx−r, r/p r(1− p)/p2
for x = r, r + 1, . . .

Hypergeometric(N,M,n) D

(
M
x

)(
N−M
n−x

)(
N
n

) , np np(1− p)

for x = 0, 1, . . . , n

Poisson(λt) D 1
x!

(λt)xe−λt, for x = 0, 1, . . . λt λt
Exponential(λ) C λe−λx, for x ∈ [0,∞) 1/λ 1/λ2

Gamma(λ, r) C
1

Γ(r)
λrxr−1e−λx r/λ r/λ2

Gamma(α, β) =
xα−1e−x/β

βαΓ(α)
, = αβ = aβ2

for x ∈ [0,∞)

Beta(α, β) C
1

B(α, β)
xα−1(1− x)β−1,

α

α + β
αβ

(α+β)2(α+β+1)

for 0 ≤ x ≤ 1

Normal(µ, σ2) C
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, µ σ2

for x ∈ R

ChiSquared(ν) C
xν/2−1ex/2

2ν/2Γ(ν/2)
, for x ≥ 0 ν 2ν

T(ν) C
Γ(ν+1

2
)

√
πν Γ(ν

2
) (1 + x2/ν)(ν+1)/2

0 ν/(ν − 2)

for x ∈ R

F(ν1, ν2) C
1

B(ν1
2
, ν2

2
)

(ν1
ν2

)ν1/2xν1/2−1

(1 + ν1
ν2
x)(ν1+ν2)/2

ν2
ν2 − 2

2ν22 (ν1+ν2−2)
ν1(ν2−2)2(ν2−4)

for > 0

Math 217 Home Page at http://math.clarku.edu/~djoyce/ma217/
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