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Today we’ll look at joint random variables and joint
distributions in detail.

Product distributions. If Ω1 and Ω2 are sam-
ple spaces, then their distributions P : Ω1 → R
and P : Ω2 → R determine a product distribu-
tion on P : Ω1 × Ω2 → R as follows. First, if
E1 and E2 are events in Ω1 and Ω2, then define
P (E1 × E2) to be P (E1)P (E2). That defines P on
“rectangles” in Ω1×Ω2. Next, extend that to count-
able disjoint unions of rectangles. There’s a bit of
theory to show that what you get is well-defined.
Extend to complements of those unions. Again,
more theory. Continue by closing under countable
unions and complements. A lot more theory. But
it works. That theory forms part of the the topic
called measure theory which is included in courses
on real analysis.

When you have the product distribution on Ω1×
Ω2, the random variables X and Y are independent,
but there are applications where we have a distri-
bution on Ω1 × Ω2 that differs from the product
distribution, and for those, X and Y won’t be in-
dependent. That’s the situation we’ll look at now.

Definition. A joint random variable (X, Y ) is a
random variable on any sample space Ω which is
the product of two sets Ω1 × Ω2.

Joint random variables do induce probability dis-
tributions on Ω1 and on Ω2. If E ⊆ Ω1, de-
fine P (E) to be the probability in Ω of the set
E × Ω2. That defines P : Ω1 → R which satisfies
the axioms for a probability distributions. Simi-
larly, you can define P : Ω2 → R by declaring for
F ⊆ Ω2 that P (F ) = P (Ω1 × F ). If it happens
that P (E × F ) = P (E)P (F ) for all E ⊆ Ω1 and

F ⊆ Ω2, then the distribution on Ω = Ω1 × Ω2 is
the product of the distributions on Ω1 and Ω2. But
that doesn’t always happen, and that’s what we’re
interested in.

A discrete example. Deal a standard deck of
52 cards to four players so that each player gets
13 cards at random. Let X be the number of
spades that the first player gets and Y be the num-
ber of spades that the second player gets. Let’s
compute the probability mass function f(x, y) =
P (X=x and Y =y), that probability that the first
player gets x spades and the second player gets y
spades.

There are

(
52

13

)(
39

13

)
hands that can be dealt to

these two players. There are

(
13

x

)(
39

13− x

)
hands

for the first player with exactly x spades, and with

the remaining deck there are

(
13− x

y

)(
26 + x

13− y

)
hands for the second player with exactly y spades.
Thus, there are(

13

x

)(
39

13− x

)(
13− x

y

)(
26 + x

13− y

)
ways of dealing hands to those two players with x
and y spades. Thus,

f(x, y) =

(
13

x

)(
39

13− x

)(
13− x

y

)(
26 + x

13− y

)
(

52

13

)(
39

13

) .

You can write that expression in terms of trino-
mial coefficients, or in terms of factorials, but we’ll
leave it as it is. If you were a professional Bridge
player, you might want to see a table of the values
of f(x, y).

It’s intuitive that X and Y are not indepen-
dent joint random variables. The more spades the
first player has, the fewer the second will proba-
bly have. In order to show they’re not indepen-
dent, it’s enough to find particular values of x
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and y so that f(x, y) = P (X=x and Y =y) does
not equal the product of fX(x) = P (X=x) and
fY (y) = P (Y =y). For example, we know they can’t
both get 7 spades since there are only 13 spades in
all, so f(7, 7) = 0. But since the first player can get
7 spades, fX(7) > 0, also the second player can, so
fY (y) > 0. Therefore f(7, 7) 6= fY (7)fY (7). We’ve
proven that X and Y are not independent.

A continuous example. Let’s choose a point
from inside a triangle ∆ uniformly at random. Let’s
take ∆ to be half the unit square, namely the half
with vertices at (0, 0), (1, 0), and (1, 1). Then

∆ = {(x, y) | 0 ≤ y ≤ x ≤ 1}.

The area of this triangle is 1
2
, so we can find the

probability of any event E, a subset of ∆, simply
by doubling its area. The joint probability density
function is constantly 1

2
inside ∆ and 0 outside.

f(x, y) =

{
2 if 0 ≤ y ≤ x ≤ 1
0 otherwise

A continuous joint random variable (X, Y ) is de-
termined by its cumulative distribution function

F (x, y) = P (X ≤ x and Y ≤ y).

We’ll figure out it’s value for this example.
First, if either x or y is negative, then the event

(X ≤ x and Y ≤ y) completely misses the triangle,
so it’s actually empty, so its probability is 0.

Second, if x is between 0 and 1 and x ≤ y, then
the event (X ≤ x and Y ≤ y) is a triangle of width
and height x, so its area is 1

2
x2. Doubling the area

gives a probability of x2.
Third, if x is between 0 and 1 and x > y, then the

point (x, y) lies inside the triangle, and the event
(X ≤ x and Y ≤ y) is a trapezoid. Its bottom
length is x, top length is x− y, and height is y, so
its area is xy − y2/2. Therefore, the probability of
this event is 2xy − y2.

There remain two more cases to be considered,
but their analyses are omitted.

We can summarize the cumulative distribution
function as

F (x, y) =


0 if x < 0 or y < 0
x2 if 0 ≤ x ≤ 1 and x ≤ y

2xy − y2 if 0 ≤ x ≤ 1 and x > y
2y − y2 if x > 1 and 0 ≤ y ≤ 1

1 if x > 1 and y > 1

Generally speaking, joint cumulative distribution
functions aren’t used as much as joint density func-
tions. Typically, joint c.d.f.’s are much more com-
plicated to describe, just as in this example.

Joint distributions and density functions.
Density functions are the usual way to describe
joint continuous real-valued random variables.

Let X and Y be two continuous real-valued ran-
dom variables. Individually, they have their own
cumulative distribution functions

FX(x) = P (X ≤ x) FY (y) = P (Y ≤ y),

whose derivatives, as we know, are the probability
density functions

fX(x) =
d

dx
FX(x) fY (y) =

d

dy
FY (y).

Furthermore, the cumulative distribution functions
can be found by integrating the density functions

FX(x) =

∫ x

−∞
fX(t) dt FY (y) =

∫ y

−∞
fY (t) dt.

There is also a joint cumulative distribution func-
tion for (X, Y ) defined by

F (x, y) = P (X ≤ x and Y ≤ y).

The joint probability density function f(x, y) is
found by taking the derivative of F twice, once with
respect to each variable, so that

f(x, y) =
∂

∂x

∂

∂y
F (x, y).

(The notation ∂ is substituted for d to indicate that
there are other variables in the expression that are
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held constant while the derivative is taken with
respect to the given variable.) The joint cumula-
tive distribution function can be recovered from the
joint density function by integrating twice

F (x, y) =

∫ x

−∞

∫ y

−∞
f(s, t) dt ds.

(When more that one integration is specified, the
inner integral, namely

∫ y

−∞ f(s, t) dt, is written
without parentheses around it, even though the
parentheses would help clarify the expression.)

Furthermore, the individual cumulative distribu-
tion functions are determined by the joint distribu-
tion function.

FX(x) = P (X ≤ x and Y ≤ ∞)

= lim
y→∞

F (x, y) = F (x,∞)

FY (y) = P (X ≤ ∞ and Y ≤ y)

= lim
x→∞

F (x, y) = F (∞, y)

Likewise, the individual density functions can be
found by integrating joint density function.

fX(x) =

∫ ∞
−∞

f(x, y) dy, fY (x) =

∫ ∞
−∞

f(x, y) dx

These individual density functions fX and fy
are often called marginal density functions to dis-
tinguish them from the joint density function
f(X,Y ). Likewise the corresponding individual cu-
mulative distribution functions FX and FY are
called marginal cumulative distribution functions to
distinguish them form the joint c.d.f F(X,Y ).

Another continuous example. The last exam-
ple was a uniform distribution on a triangle. For
this example, we’ll go back to the unit square, but
make the distribution nonuniform. We’ll describe
the distribution via a joint density function

f(x, y) = 6x2y

if (x, y) is in the unit square, that is, x and y are
both between 0 and 1. Outside that square f(x, y)
is 0. The graph z = f(x, y) of this function is a
surface sitting above the unit square.

The volume under that surface is 1, as it has to be
for f to be a probability density function. To find
the probability that (X, Y ) lies in an event E, a
subset of the unit square, just find the volume of
the solid above E and below the surface z = f(x, y).
That’s a double integral

P ((X, Y ) ∈ E) =

∫∫
E

f(x, y) dx dy.

For example, suppose we want to find the proba-
bility P (0 ≤ X ≤ 3

4
and 1

3
≤ Y ≤ 1). The event

E is (0 ≤ X ≤ 3
4

and 1
3
≤ Y ≤ 1), and that de-

scribes a rectangle. The double integral giving the
probability is

P (E) =

∫ 3/4

0

∫ 1

1/3

6x2y dy dx.

Evaluate that integral from the inside out. The
inner integral is∫ 1

1/3

6x2y dy = 6x2

∫ 1

1/3

y dy

= 6x2(y2/2)
∣∣∣1
y=1/3

= 6x2(1− 1
9
)/2 = 8

3
x2
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Next, evaluate the outer integral.

P (E) =

∫ 3/4

0

8
3
x2 dx

= 8
9
x3
∣∣∣3/4
0

= 3
8

Let’s do more with this example. We’re given
the joint density function f(x, y). Let’s find the
marginal density functions for X and Y .

fX(x) =

∫ ∞
−∞

f(x, y) dy

=

∫ 1

0

6x2y dy

= 6x2y2/2
∣∣∣1
y=0

= 3x2

fY (y) =

∫ ∞
−∞

f(x, y) dx

=

∫ 1

0

6x2y dx

= 2x3y
∣∣∣1
x=0

= 2y

In summary, the joint density is f(xy) = 6x2y
over the unit square. The marginal density func-
tions are fx(x) = 3x2 and fY (y) = 2y.

Note: it so happens in this example that the joint
density function f(x, y) is the product of the two
marginal density functions fX(x, y)fY (x, y). That
doesn’t always happen. But it does happen when
the random variables X and Y are independent,
which is discussed next.

Independent continuous random variables.
In the case of continuous real random variables, we
can characterize independence in terms of density
functions. Random variables X and Y will be in-
dependent when the events X ≤ x and Y ≤ y are
independent for all values of x and y. That means

P (X ≤ x and Y ≤ y) = P (X ≤ x)P (Y ≤ y),

from which it follows that the joint cumulative dis-
tribution function is the product of the marginal
cumulative distribution functions

F (x, y) = FX(x)FY (y).

Take the partial derivatives
∂

∂x

∂

∂y
of both sides of

that equation to conclude

f(x, y) = fX(x) fY (y),

the joint probability density function is the product
of the marginal density functions

Another example. We’ve seen two examples so
far. One was when the probability was uniform over
a triangle, and the other had X and Y independent.
This example is of a nonuniform probability where
the variables aren’t independent.

Let

f(x, y) =

{
x + y if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

0 otherwise

You can show that the double integral∫ 1

0

∫ 1

0

(x + y) dy dx

equals 1 as follows. First, evaluate the inner inte-
gral. ∫ 1

0

(x + y) dy = xy + 1
2
y2
∣∣∣1
y=0

= x + 1
2

Then substitute that in the outer integral and eval-
uate it. ∫ 1

0

(x + 1
2
) dx = 1

2
x2 + 1

2

∣∣∣1
x=0

= 1

Therefore f is a probability density function.
Next, let’s compute the two marginal density

functions fX and fY , so X and Y . In fact, the
first computation we performed, evaluating the in-
ner integral, gave us the marginal density function
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for X. In general, the marginal density function for
X can be found as the integral

fX(x) =

∫ ∞
−∞

f(x, y) dy

which in this case was, for x ∈ [0, 1],

fX(x) =

∫ 1

0

(x + y) dy = x + 1
2
.

Also for this example, since f(x, y) is symmetric in
x and y, therefore the marginal density function for
Y is fY (y) = y + 1

2
for y ∈ [0, 1].

For X and Y to be independent, the joint density
function f(x, y) would have to equal the product
fX(x)fY (y) of the two marginal density functions,
but

x + y 6= (x + 1
2
)(y + 1

2
).

Therefore, X and Y are not independent.
Later, we’ll develop the concept of correlation

which will quantify how related X and Y are. In-
dependent variables will have 0 correlation, but if
a larger value of X indicates a larger value of Y ,
then they will have a positive correlation.

Math 217 Home Page at
http://math.clarku.edu/~djoyce/ma217/
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