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A random wvariable is nothing more than a vari-
able defined on a sample space () as either an ele-
ment of 2 or a function on 2. We usually denote
random variables with letters from then end of the
alphabet like X, Y, and Z.

It might refer to an element in 2. For example,
if you flip a coin, the sample space is Q = {H,T}.
A random variable X would have one of the two
values H or T.

It might refer to a function on 2. If you toss two
dice, and the outcome of the first die is indicated
by the random variable X on Q = {1,2,3,4,5,6},
and the outcome of the second die is indicated by
the random variable Y € €2, then the sum of the
two dice is a random variable Z = X 4+ Y. This
random variable Z is actually a function 22 — R
since for each ordered pair (X,Y) € Q x Q it gives
a number from 2 through 12.

Since random variables on €2 can be considered
as functions, by declaring a random variable to be
a function on a sample space we've covered both
elements and functions.

Real-valued random variables. The random
variables we’ll consider are all real-valued random
variables, so they’re functions 2 — R. So when
we say “let X be a random variable” that means
formally a function X : 2 — R.

We've looked at lots of random variables. For
example, when you toss two dice, their sum, which
is an integer in the range from 2 to 12, is a ran-
dom variable. In a Bernoulli process, there are sev-
eral interesting random variables including X,,, the
number of successes in n trials, and 7', the number
of trials until the first success.

We can use the notation of random variables to
describe events in the original sample space. Let X,

and T be the random variables just mentioned in a
Bernoulli process. Then X,, > 3 is the event that
we get more than 3 successes among n trials, and
P(X,, > 3) is the probability of that event. Also,
5 < T < 8 is the event that the first success occurs
no sooner than the 5™ toss and lo later than the 8
toss. We can even use algebra on random variables
like we do ordinary variables: the expression |T" —
30| < 5 says the first success occurs within 5 trials
of the 30" trial.

Real random variables induce probability
measures on R. When we have a real random
variable X : 2 — R on a sample space (), we can
use it to define a probability measure on R. For
a subset ¥ C R, we can define its probability as
P(X € E). When R has a probability measure on
it like that, we can do things that we can’t do for ab-
stract sample spaces like 2. We can do arithmetic
and calculus on R. We'll do that. First we’ll will
look at discrete random variables where we can do
arithmetic and even take infinite sums. Later on,
we’ll look at continuous random variables, and for
those we’ll need differential and integral calculus.

Probability mass functions. A discrete ran-
dom wvariable is one that takes on at most a count-
able number of values. Every random variable on a
discrete sample space is a discrete random variable.

The probability mass function fx(z), also de-

noted px(x), for a discrete random variable X is
defined by

fx(z) = P(X=x)

When there’s only one random variable under con-
sideration, the subscript X is left off and the prob-
ability mass function is denoted simply f(X).

For example, let X be the random variable which
gives the sum of two tossed fair dice. Its probability
mass function has these values

x|2 3 4 5 6 6 8 9 10 11 12
1 4 5 4 3 2 1
P(¥) |35 5 3 36 36 36 36 36 36 36 36

Probability mass functions are usually graphed
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as histograms, that is, as bar charts. Here’s the

one for the dice.

For another example, consider the random vari-
able X,,, the number of successes in n trials of a
Bernoulli process with probability p of success. It
has a binomial distribution. We’ve already com-
puted the probability mass function, although we
didn’t call it that, and we found that
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Here’s a histogram for it in the case that n = 20
and p = 3.
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This shape that we're getting is approximat-
ing what we’ll call a normal distribution. Jacob

Bernoulli studied it and showed the first version
of the Central Limit Theorem, that as n — oo,
a Bernoulli distribution actually does approach a
normal distribution.

One last example of a probability density func-
tion. Let T be the number of trials until the first
success in a Bernoulli process with p = % That has
a geometric distribution, and we found that
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The first part of its histogram is shown below. It
continues off to the right, but the bars are too short
to see.
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Probability mass functions aren’t used for continu-
ous probabilities. Instead, something called a prob-
ability density function is used. We’ll look at them
later.

Cumulative distribution functions. Let X be
any real-valued random variable. It determines a
function, called the cumulative distribution func-
tion abbreviated c.d.f. or, more simply, the distri-
bution function Fx(x) defined by

Fx(x) = P(X < x).

When there’s only one random variable under con-
sideration, the subscript X is left off and the c.d.f.
is denoted F'(z). In the expression X < z, the sym-
bol X denotes the random variable, and the symbol
x is a number.
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For a discrete random variable, you can find the
c.d.f. F(z) by adding, that is, accumulating, the
values of probability mass function p(z) for values
less than or equal to x. Thus, the c.d.f. for the sum
of two tossed dice has these values

x[2 3 4 5 6 7 8 9 10 11 12
Flz)|L 3 & 10 15 21 2 30 33 35 3
36 36 36 36 36 36 36 36 36 36 36

The cumulative distribution function for a dis-
crete random variable is a step function with values
between 0 and 1, starting off at 0 on the left and
stepping up to 1 on the right. Cumulative distribu-
tion functions usually aren’t shown as graphs, but

here’s the one for the sum of two dice.
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