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We've looked at a couple of these already, for
instance, flipping a fair coin, or tossing a fair die.
In general, a uniform distribution on a finite sample
space () with n outcomes assigns to each outcome
) the same value 1/n. Therefore, the probability of
an event F is the number of outcomes in F divided
by n:
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That means for uniform finite probabilities, you can
figure out the probabilities if you can count the out-
comes in an event. Thus, everything we discussed
about combinatorics applies directly to uniform fi-
nite probabilities.

P(E) =

Odds. The earliest studies of probabilities were
all about this uniform finite situation, but they
weren’t expressed in terms of probabilities, that
is, values between 0 and 1. Instead they were ex-
pressed in terms of ‘odds.” These odds were usu-
ally not abstract numbers, but monetary payoffs for
bets. Odds were the standard way to understand
probability up through the 17" century.

Let’s take a concrete example. Suppose we're
tossing a pair of dice repeatedly until either a sum
of 7 comes up or a sum of 5 comes up. On a single
toss of a pair of dice, a sum of 7 occur up 6 different
ways (1 46,2+ 5,3+ 4,4+ 3,5+ 2, or 6 + 1),
while a sum of 5 can occur in only 4 different ways
(1+4,3+2,2+3, or 44 1). In this game, there are
10 outcomes, which, assuming the dice are fair, all
have the same probability. Since 6 are in the event
E = {sum is 7}, while 4 are in its complement F° =
{sum is 5}, we can conclude P(E) = & = 2 while
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We can express this result in terms of odds. Since
E includes 6 outcomes, and E°€ includes 4 outcomes,
and each outcome is equally likely, we can say the
odds of E to E€ are in the ratio 6 to 4, or, in lowest
terms, 3 to 2.

Suppose you bet on E and your opponent bets on
E*. Then a fair bet is where you bet $3, and your
opponent bets $2. If the game results in E, you
collect all $5, but if it results in £, your opponent
collects all $5. Thus, for you, $3 will get you $2,
and for your opponent, $2 will get your opponent
$3.

It’s easier to deal with straight probabilities than
with odds for two reasons. One is that probabilities
are single numbers between 0 and 1 whereas odds
are ratios of two numbers. The other is that proba-
bilities don’t involve money, wagers, and payments,
but odds do, at least the historical origins of odds
involve money, wagers, and payments.

On the other hand, probabilities are more ab-
stract than odds since the concrete connection to
real-world implications (gain or loss of money) is
removed by one step.

Repeated trials. One of the most important
questions for probability and statistics concerns re-
peated trials.

For example, if you toss 4 coins, what’s the prob-
ability that 2 of them come up heads? For one
coin, the sample space consists of two outcomes,
{H,T}. For 4 coins, there are 16 outcomes in the
sample space. For instance, the outcome HTTT
says the first coin comes up heads, the second tails,
the third tails, and the fourth tails. Since there
are 16 different strings of length 4 made out of H
and T, therefore |2] = 16. They should all have
the same probability (since the outcome of one coin
doesn’t affect the outcome of any other), so we're
dealing with uniform discrete probability. Each of
the 16 outcomes has probability %6. To determine
the probability that 2 of them come up heads all we
have to do is determine how many outcomes have
exactly 2 heads and divide by 16. The number of
ways to choose 2 to be heads out of the four coin
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tosses is the binomial coefficient (;l) = 6. Thus,
that probability is % = %.

In general, the probability of flipping exactly k
heads in n flips is (})/2".

We can do something similar for rolling dice.
Suppose we want to know the probability of toss-
ing k£ 5’s when we toss n dice (or when we toss the
same die n times). For one die, the sample space
consists of 6 outcomes {1,2,3,4,5,6}. For n dice
there are 6™ possible outcomes. How many of these
outcomes have exactly k 5’s? It could be any k of
the n tosses that come up 5’s, and there are (Z) of
those, but for the remaining n—k tosses, they could
come up any of the remaining five numbers 1, 2, 3,
4, or 6, and there are 5" % ways to do that. So al-
together, there are (Z) 5" of them, each with the

same probability of 1/6". Therefore the probability
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the probability of getting a 5 on one

where p = %,
roll.

This is an example of a binomial probability dis-
tribution.

Urns and balls. Lots of problems involving
probability involve random choices of selection. Al-
though they could be stated with different appli-
cations, their structure is similar and they’re tra-
ditionally described as randomly selecting balls of
various colors out of urns. It’s always assumed that
each ball that remains in the urn has the same prob-
ability of being chosen as any other.

Sampling without replacement. In this situa-
tion we have N balls in the urn, and M of them are
“preferred”, let’s say black, and the rest, N — M,
are white. You randomly select n of them, leaving
N — n of them in the urn. What’s the probability
of getting exactly k black balls (and N — k& white
balls)?

Let’s put in specific numbers to see it more con-
cretely. Suppose there are N = 11 balls with M = 4
black ones and N — M = 7 white ones in the urn.
You select n = 5 of them at random leaving the
rest in the urn. What’s the probability of getting
exactly k = 3 black ones?

We can answer this with uniform discrete proba-
bilities. We need to identify a sample space where
each outcome is equally likely. There are 11 balls
and we're choosing 5 of them, and any combina-
tion of the 11 is as likely as any other. Thus the
sample space has (151) = 462 outcomes each with a
probability of 1/462.

How many of these combinations include 3 black
ones and 2 white ones? The 3 black ones are chosen
from the 4 black balls in the urn, and the 2 white
balls are chosen from the 7 white urns, so there are

(5)(5) = 84. Thus, the probability is 84/462 =
14/77 =~ 0.182.

This is called sampling without replacement since
we don’t replace each ball after selecting it. The

argument we just gave shows the the probability in
general is
MY (N—M
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when you have N balls, M of them preferred, select
n of them, and get k preferred ones. These prob-



abilities go by the name hypergeometric probability
distribution.

Sampling with replacement. This is like sam-
pling without replacement, but you replace each
ball back in the urn before randomly selecting the
next. That changes the probabilities.

We have N balls in the urn, and M of them are
“preferred”, let’s say black, and the rest, N — M,
are white. You select n of them, one at a time,
replacing each one back in the urn before selecting
the next. What’s the probability of getting exactly
k black balls (and N — k white balls)?

Let’s use the same specific numbers we had be-
fore. Suppose there are N = 11 balls with M = 4
black ones and N — M = 7 white ones in the urn.
You select n = 5 of them with replacement. What’s
the probability of getting exactly & = 3 black ones?

We can answer this with uniform discrete prob-
abilities. We have a list of 5 balls we chose, each
one can be any of the 11 balls in the urn, and they
can be repeated since we're replacing them. So our
sample space has 11° outcomes.

How many of those 11° = 161051 outcomes have
3 black balls and 3 white balls? The 3 black balls
can occur anywhere on the list of 5 balls, (g) =10
ways of doing that. The other 2 places on the list
will be for the 2 white balls. Those 3 places on
the list for black balls can be filled by any of the 4
black balls in the urn, and there are 3* = 81 ways
of doing that; and the 2 places on the list for white
balls can be filled by any of the 7 white balls in
the urn, and there are 27 = 128 ways of doing that.
So, altogether, we have 30 - 81 - 128 = 31104 of the
outcomes that have 3 black balls and 2 white balls.
Therefore the probability is 31104/161051 ~ 0.193.

Generalizing that argument, you’ll see that the
probabilities in general for sampling with replace-
ment are
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where p = M/N is the probability of getting a pre-
ferred ball when you choose just one ball out of the

urn. This is another example of a binomial proba-
bility distribution.

The Birthday problem. What’s the probabil-
ity that among 23 randomly chosen people there
are at least 2 with the same birthday? It’s surpris-
ingly large. To answer this question, we’ll make a
couple of simplifying assumptions. First, we’ll as-
sume there are only 365 possible birthdays. (You
can add back Feb 29 to see how that affects the an-
swer.) Second, we’ll assume each is equally prob-
able. This leads to a situation of uniform discrete
probability. An outcome in the sample space con-
sists of an assignment of birthdays to each of the 23
people. Since each of the 23 people can have any
of 365 birthdays, there are 365* outcomes in the
sample space, each with the same probability.
Rather than find the probability that at least 2
have the same birthday, we’ll compute the comple-
mentary probability, that is, the probability that
all 23 have different birthdays. How many ways can
that happen? What we want is a 23-permutation
from a set of size 365. There are 365!/342! of them.
Therefore, the probability that all 23 have different

365!/342!
birthdays is ﬁ = 0.4927028, which is just

under % So the probability that at least 2 of them
have the same birthday is just over %

The Birthday applet| computes these probabili-
ties.
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