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Bayes’ pool table example. The process we
just completed is what Thomas Bayes (1702–1761)
did. He illustrated the problem with balls on a
table. I’ll paraphrase his illustration using the ter-
minology we developed above.

Suppose a ball W is placed on a pool table so
that “there shall be the same probability that it
rests upon any equal part of the plane [rectangle]
as another.” We’ll suppose the length of the table
is 1 and that the distance of W from one end, call
it the left end, is p. We don’t know where W is
placed, so our prior distribution on p is uniform,
that is, the density function for p is uniform on the
interval [0, 1].

Next suppose another ball O is repeatedly ran-
domly placed on the table n times, and in k of
these placements ball O is closer to the left end
than ball W is. Suppose all we know is that of the
n times O was placed, k times was placed closer
to the left end. Given that outcome what is the

posterior distribution for p? We just worked out
the answer. The prior distribution for p was uni-
form on [0, 1]. Therefore, the posterior distribution
is Beta(k + 1, n+ 1− k).

The conjugate prior family for Bernouli dis-
tributions. There are, of course, applications
where the prior distribution on p should be uniform
on [0, 1]. But sometimes you have other informa-
tion that suggests p isn’t uniformly distributed on
[0, 1] but has some other distribution. Fortunately,
the whole family of beta distributions works well
here. That is, if the prior distribution is any beta
distribution Beta(α0, β0), and we observe k suc-
cesses and l failures, then the posterior distribution
is Beta(α0+k, β0+l). Here’s why. The prior distri-
bution f(p) was proportional to pα−1(1−p)β−1, and
the posterior distribution f(p|x) is proportional to
pk(1− p)l times the prior, therefore

f(p|x) ∝ pk(1− p)lpα−1(1− p)β−1

= pα+k−1(1− p)β+l−1

Since, when the prior distribution is a beta dis-
tribution, then the posterior one is also a beta dis-
tribution, we say the family of beta distributions
is a conjugate prior family for p, the parameter in
the Bernoulli process. The first parameter, α, is
increased by the number of successes while the sec-
ond, β, is increased by the number of failures.

Selecting the prior distribution. Here’s one
way we can incorporate knowledge about p by se-
lecting a particular beta distribution. Typically,
our knowledge about a parameter can be summa-
rized in terms of a mean µ and variance σ2 for its
distribution. Since the family of beta distributions
is parametrized by two variables, these two values
µ and σ2 should determine exactly one beta distri-
bution. Now, a Beta(α, β) distribution has mean

µ =
α

α + β

and variance

σ2 =
αβ

(α + β)2(α + β + 1)
,
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so we can solve these two equations for the param-
eters α and β of the prior distribution in terms of
µ and σ2. We find

α = µ

(
µ(1− µ)

σ2
− 1

)
β = (1− µ)

(
µ(1− µ)

σ2
− 1

)
For instance, suppose that you think p is about

0.5 with a standard deviation of 0.1 (so that p lies
in the interval [0.3, 0.7] with probability close to
95% if p is close to normally distributed). Then
µ = 0.5 and σ = 0.1. It works out that α and
β both equal 12. That’s the same amount of in-
formation that you would get from 24 Bernoulli
trials where half of them turn out successes. In
other words, if you start with the prior distribu-
tion Beta(0, 0), run those 24 trials and get 12 suc-
cesses and 12 failures, then your posterior distri-
bution would be Beta(12, 12) which has a mean
µ = 0.5 and standard deviation σ = 0.1.

The figure below shows the density function for
Beta(12, 12). It’s very close to a normal distribu-
tion with µ = 0.5 and σ = 0.1.

4 Point estimators and prob-

ability intervals.

Point Estimators. The posterior distribution
f(θ|x) gives a whole distribution for the parame-
ter θ. A point estimator for θ is supposed to be a

single number, a best guess for θ, in some sense of
the word “best”.

With a whole distribution for θ, there are a lot
of choices for the best guess. One that’s often used
is just the mean of the distribution, and, in this
case, that’s the mean of the posterior distribution
f(θ|x), so it’s µθ|x = E(θ|x). That’s what we’ll
use, and we’ll call it the Bayesian point estimator.
Other choices for estimators are the median of the
distribution and the mode of the distribution.

For the Bernoulli distributions studied above,
the prior distribution is any beta distribution
Beta(α0, β0), often chosen to be Beta(1, 1), the
uniform distribution on [0, 1]. After observing n
trials, of which k are successes and l failures, then
the posterior distribution is Beta(α0 + k, β0 + l).
The prior point estimator was

µp = E(p) =
α0

α0 + β0
,

and the posterior estimator is

µp|x = E(p|x) =
α0 + k

α0 + β0 + k + l
.

If we take the prior to be Beta(1, 1), that makes
the prior estimator 1

2
and the posterior estimator

k+1
k+l+2

.
This doesn’t agree with the maximum likelihood

estimator for that data, which is k
k+l

, but it’s close.
The maximum likelihood estimator is actually the
mode of the distribution, the maximum value of
the posterior distribution Beta(α0 + 1, β0 + 1).
That beta distribution has a density proportional
to pk(1− p)l. A little calculus shows that the max-
imum occurs when p = k

k+l
.

There are good arguments for concluding k+1
k+l+2

is a better estimator for p than k
k+l

is, but it’s easy
to change our prior to make the Bayesian estimate
equal to k

k+l
. Just make the prior Beta(0, 0), a sort

of know-nothing prior. Of course, that is not a valid
distribution, but an improper distribution. Indeed,
Beta(α, β) is only a probability distribution if both
α ≥ 1 and β ≥ 1. Still, asserting that the prior is
Beta(0, 0) can be taken to be a formal statement
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so that when the data x comes in, with at least
one success and one failure, the resulting posterior
distribution becomes Beta(k, l).

Interval estimators. In classical statistics, we
have confidence intervals. When we say, for exam-
ple, that a 90% confidence interval for µ is [0.3, 0.6],
we aren’t saying that the probablility that µ lies in
[0.3, 0.6] is 0.9. Instead, we’re saying that in the
long run, when we use the 90% confidence levels,
we’ll be right about 90% of the time.

In Bayesian statistics, we can actually have prob-
ability intervals, and we can get them from the pos-
terior density function. For example, suppose our
prior on p is uniform, and we perform n = 2 tri-
als, have k = 1 success and l = 1 failure. Then
the posterior is Beta(2, 2) which has the density
function

fp|x = 6p(1− p, )

and its integral is the c.d.f

Fp|x = 3p2 − 2p3.

We can find a 90% probablility interval for p if we
remove from the interval [0, 1] two ends each with
probability 0.05. To find the left interval, we’re
looking for a value a so that Fa|x = 0.05, which you
can find from a table of beta distributions, or solve
3a2 − 2a3 = 0.05. I graphed it to find a = 0.135.
So, we’ll remove the 5% interval [0, 0.135] from the
left end. Likewise, we’ll remove the 5% interval
[0.865, 1] from the right end. That leaves the 90%
interval [0.135, 0.0.865].

You could also remove 10% from one end and
nothing from the other to get a 90% probability
interval.

Math 218 Home Page at
http://math.clarku.edu/~djoyce/ma218/
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