## Definition 3

A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the less.
 The line AB is cut in extreme and mean ratio at C since AB:AC = AC:CB. A construction to cut a line in this manner first appeared in Book II, proposition II.11. Of course that was before ratios were defined, and there an equivalent condition was stated in terms of rectangles, namely, that the square on AC equal the rectangle AB by BC. That construction was later used in Book IV in order to construct regular pentagons and 15-sided polygons (propositions IV.10 through 12 and 16). Now that the theory of ratios and proportions has been developed, it is time to define this section as a ratio, rather than using rectangles. An alternate construction is given in proposition VI.30.

Next definition: VI.Def.4

Previous: VI.Def.3

 Select from Book VI Book VI intro VI.Def.1 VI.Def.2 VI.Def.3 VI.Def.4 VI.1 VI.2 VI.3 VI.4 VI.5 VI.6 VI.7 VI.8 VI.9 VI.10 VI.11 VI.12 VI.13 VI.14 VI.15 VI.16 VI.17 VI.18 VI.19 VI.20 VI.21 VI.22 VI.23 VI.24 VI.25 VI.26 VI.27 VI.28 VI.29 VI.30 VI.31 VI.32 VI.33 Select book Book I Book II Book III Book IV Book V Book VI Book VII Book VIII Book IX Book X Book XI Book XII Book XIII Select topic Introduction Table of Contents Geometry applet About the text Euclid Web references A quick trip