Your name: \qquad

Math 114 Discrete Mathematics
First Midterm
February 2018

You may use a calculator and one sheet of prepared notes during this test. Show all your work for credit. Points for each problem are in square brackets.

1. Negating propositions. [15; 5 points each part] For each of the following propositions, write the negation of the proposition so that negations only appear immediately preceding predicates; there should be no negations of conjunctions, disjunctions, or quantifiers.
a. $P(x) \wedge P(y)$
b. $\forall x P(x)$
c. $\exists x \forall y(P(x) \rightarrow Q(x, y))$
2. On truth tables. [20; 10 points each part]
a. Use a truth table to determine whether $(p \wedge q) \rightarrow r$ is logically equivalent to ($p \rightarrow$ $r) \vee(q \rightarrow r)$. Explain in a sentence why your truth table says whether they are logically equivalent or not.

p	q	r
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

b. Use a truth table to determine whether $(p \vee q \rightarrow r) \rightarrow((p \rightarrow r) \wedge(q \rightarrow r))$ is a tautology, a contradiction, or a contingent proposition. Explain in a sentence why your truth table shows whether it is a tautology, a contradiction, or a contingent proposition.

p	q	r
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

3. Interpretation of symbolic expressions. [25; 5 points each part] Determine the truth value of each of the following statements if the universe of discourse for each variable consists of all real numbers. Simply write "true" or "false" for each; no need to explain why.
\qquad a. $\forall x\left(x^{2}>0\right)$.
\qquad b. $\forall y \exists x(x<y)$.
\qquad c. $\forall x \exists y\left(y^{2}-x^{2}=1\right)$.
\qquad d. $\exists y \forall x\left(y^{2}-x^{2}=1\right)$.
e. $\exists x \exists y\left(y^{2}-x^{2}=1\right)$.
4. On proofs. [15] Prove that for any positive integer n, if 3 divides n^{2}, then 3 divides n. Here, "divides" means divides without remainder. [Suggestion: one way you can do this is by a proof by contradiction using cases. There are 3 cases. Case a: 3 divides n without remainder (which you're trying to show). Case b: there is a remainder of 1 when 3 divides n. Case c: there is a remainder of 2 when 3 divides n.]
5. On sets. [25] True/false. For each sentence write the whole word "true" or the whole word "false". If it's not clear whether it should be considered true or false, you may explain in a sentence if you prefer.
\qquad a. If $A=\{1,3,5,7,9\}$, then $|\wp(A)|=16$.
(Recall that $\wp(A)$ is the powerset of A.)
\qquad b. $A \cap B \subseteq C$ implies $A \cup B \cup C \subseteq A \cup B$.
\qquad c. If $A \cup B=B$, then $A \cap B=A$.
\qquad d. The composition of two onto functions is also an onto function.
(Recall that a onto function is also called a surjection.)
\qquad e. If $A=B$, then $|A|=|B|$.
(Recall that $|A|$ is the cardinality of the set A.)

$\# 1 .[15]$	
$\# 2 .[20]$	
$\# 3 .[25]$	
$\# 4 .[15]$	
$\# 5 .[25]$	
Total	

