
Math 114 Discrete Mathematics
First Midterm Anaswers

February 2018

Scale. 90–100 A, 79–89 B, 67–78 C. Median 88.

1. Negating propositions. [15; 5 points each part] For
each of the following propositions, write the negation of the
proposition so that negations only appear immediately pre-
ceding predicates; there should be no negations of conjunc-
tions, disjunctions, or quantifiers.

a. P (x) ∧ P (y)

The negation ¬(P (x) ∧ P (y)) can be converted using De
Morgan’s laws to ¬P (x) ∨ ¬P (y).

b. ∀xP (x)

Passing the negation in ¬∀xP (x) past the quantifier
changes it from a universal quantifier to an existential one:
∃x¬P (x).

c. ∃x∀y (P (x)→ Q(x, y))

Passing the negation past the quantifiers in
¬∃x∀y (P (x) → Q(x, y)) yields ∀x∃y ¬(P (x) → Q(x, y)).
Then, the negation of the implication (P (x) → Q(x, y)
gives P (x) ∧ ¬Q(x, y). So the final answer is
∀x∃y (P (x) ∧ ¬Q(x, y)).

2. On truth tables. [20; 10 points each part]

a. Use a truth table to determine whether (p ∧ q) → r
is logically equivalent to (p → r) ∨ (q → r). Explain in a
sentence why your truth table says whether they are logically
equivalent or not.

p q r (p ∧ q) → r (p→ r) ∨ (q → r)
T T T T T T T T
T T F T F F F F
T F T F T T T T
T F F F T F T T
F T T F T T T T
F T F F T T T F
F F T F T T T T
F F F F T T T T

Since the columns for the two propositions are the same in
all eight rows, therefore the propositions are logically equiv-
alent.

b. Use a truth table to determine whether (p∨ q → r)→
((p→ r)∧ (q → r)) is a tautology, a contradiction, or a con-
tingent proposition. Explain in a sentence why your truth
table shows whether it is a tautology, a contradiction, or a

contingent proposition.

p q r (p ∨ q → r) → ((p→ r) ∧ (q → r))
T T T T T T T T T
T F F T F T F F F
T T T T T T T T T
T F F T F T F F T
T T T T T T T T T
T F F T F T T F F
F T T F T T T T T
F T F F T T T T T

This is a tautology since it’s true in all eight rows.

3. Interpretation of symbolic expressions. [25; 5
points each part] True/false.

a. ∀x (x2 > 0). False. When x = 0, it is not the case that
x2 > 0.

b. ∀y ∃x (x < y). True. Given any number y, there is a
smaller number x, for example, x = y − 1.

c. ∀x ∃y (y2 − x2 = 1). True. Take y = ±
√

1 + x2.

d. ∃y ∀x (y2 − x2 = 1). False. Given y, there are at most

two values of x that satisfy this equation, x = ±
√
y2 − 1.

e. ∃x∃y (y2−x2 = 1). True. For example, x = 0 and y = 1.

4. On proofs. [15] Prove that for any positive integer
n, if 3 divides n2, then 3 divides n. Here, “divides” means
divides without remainder. [Suggestion: one way you can do
this is by a proof by contradiction using cases. There are 3
cases. Case a: 3 divides n without remainder (which you’re
trying to show). Case b: there is a remainder of 1 when 3
divides n. Case c: there is a remainder of 2 when 3 divides
n.]

The proof that follows is based on the suggestion. There
are various ways it can be written up.

Proof: Suppose that 3 divides n2. One of the three cases a,
b, and c described in the suggestion holds.

Case b: Suppose there is a remainder of 1 when 3 divides
n. Then n = 3k + 1 for some integer k. Then n2 = (3k +
1)2 = 9k2 + 6k+ 1. Since 3 divides 9k2 + 6k, therefore when
3 divides n2 there is a remainder of 1. So case b cannot
occur when 3 divides n2.

Case c: Suppose there is a remainder of 2 when 3 divides
n. Then n = 3k + 2 for some integer k. Then n2 = (3k +
2)2 = 9k2 + 12k+ 4. Since 3 divides 9k2 + 12k+ 3, therefore
when 3 divides n2 there is a remainder of 1 again. So case c
cannot occur when 3 divides n2.

That leaves only case a in which 3 divides n.
Therefore, if 3 divides n2, then 3 also divides n. q.e.d.

There are also proofs that use other properties of positive
integers such as the unique factorization theorem. We’ll dis-
cuss that later in chapter 3.
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5. On sets. [25] True/false.

a. If A = {1, 3, 5, 7, 9}, then |℘(A)| = 16. (Recall that℘(A)
is the powerset of A.) False. |℘(A)| = 2|A| = 25 = 32.

b. A ∩ B ⊆ C implies A ∪ B ∪ C ⊆ A ∪ B. False. One
counterexample is given by A = {1}, B = {2}, C = {1, 2, 3}.
c. If A ∪ B = B, then A ∩ B = A. True. Both equations
are equivalent to A ⊆ B.

d. The composition of two onto functions is also an onto
function. (Recall that a onto function is also called a sur-
jection.) True.

e. If A = B, then |A| = |B|. (Recall that |A| is the cardi-
nality of the set A.) True. There’s only one set here, and it
has the same cardinality as itself.
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