Section 1.3, selected answers
Math 114 Discrete Mathematics
D Joyce, Spring 2018

2. Let $P(x)$ be the statement "the word x contains the letter a. " What are the truth values?
a. P (orange). That's the statement "the word orange contains the letter a. ." A logician might quibble that orange is not a word but a fruit, so the statement is false; the logician would say 'orange' is the word. Let's not worry about that. Since the word 'orange' has an ' a ' as its third letter, the statement is true.

Parts band care false since the words 'lemon' and 'true' don't have 'a's in them, but \mathbf{d} is true since the word 'false' does have an ' a '.
6. Let $N(X)$ be " x has visited North Dakota," where the domain includes all the students in your school. Express these quantifications in English.
a. $\exists x N(x)$. Someone in the school has visited North Dakota.
b. $\forall x N(x)$. Everyone in the school has visited North Dakota.
c. $\neg \exists x N(x)$. No one in the school has visisted North Dakota.
d. $\exists x \neg N(x)$. There is someone in the school who hasn't visited North Dakota.
e. $\neg \forall x N(x)$. Not everyone in the school has visited north Dakota. (Note that this is logically equivalent to d but it's expressed differently.)
f. $\forall x \neg N(X)$. Everyone in the school has not visited North Dakota. (Note that this is logically equivalent to \mathbf{c} but it's expressed differently.)
10. Let $C(x)$ be the statement " x has a cat," let $D(x)$ be the statement " x has a dog," let $F(x)$ be the statement " x has a ferret." Let the domain consist of all students in your class. Express the following statements in terms of C, D, F, quantifiers, and logical connectives.

Let's write $C x$ rather than $C(x)$ so that we don't have as many parentheses.
a. A student in your class has a cat, a dog, and a ferret. $\exists x(C x \wedge D x \wedge F x)$.
b. All students in your class have a cat, a dog, and a ferret. $\forall x(C x \wedge D x \wedge F x)$.
c. Some student in your class has a cat and a ferret, but not a dog. $\exists x(C x \wedge F x \wedge \neg D x)$.
d. No student in your class has a cat, a dog, and a ferret. $\neg \exists x(C x \wedge D x \wedge F x)$.
e. For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has one of these animals as a pet. One expression that works is $\exists x C x \wedge \exists y D y \wedge \exists z F z$. When you write it that way, it's easy to see that there can be three different pet owners in the class. But usually you'll see
$\exists x C x \wedge \exists x D x \wedge \exists x F x$. The three x s can refer to different people.
15. Determine the truth value. The universe of discourse is the set of integers. Think of these as questions.
a. $\forall n\left(n^{2} \geq 0\right)$. Is the square of any integer greater or equal to 0 ? Yes. No square is negative.
b. $\exists n\left(n^{2}=2\right)$. Is there an integer whose square is 2 ? No. The solutions $n= \pm \sqrt{2}$ are not integers.
c. $\forall n\left(n^{2} \geq n\right)$. Is the square of every integer greater than or equal to the integer itself? It is if the number is an integer.
d. $\exists n\left(n^{2}<0\right)$. Is there any integer whose square is negative? No. See part a above.
16. Determine the truth value. The universe of discourse is the set of real numbers. Think of these as questions.
a. $\exists x\left(x^{2}=2\right)$. Is there a number whose square is 2 ? Yes, in fact, two of them $\pm \sqrt{2}$.
b. $\exists x\left(x^{2}=-1\right)$. Are there real numbers whose square is -1 ? No, only complex ones, $\pm i$.
c. $\forall x\left(x^{2}+2 \geq 1\right)$. If you take any number x, square it, and add 2 , do you get a number that is at least 1? Yes, since after you square it, it's at least 0 , so adding 2 makes it at least 2 , which is bigger than 1 .
d. $\forall x\left(x^{2} \neq x\right)$. Can you ever square a number and get that very number? Yes, that happens when you start with either 0 or 1 . So the statement $\forall x\left(x^{2} \neq x\right)$ is false.
36. Find a counterexample, if possible, to these universally quantified statements, where the universe of discourse is the set of all real numbers.
a. $\forall x\left(x^{2} \neq x\right)$. Are there any real numbers whose squares are equal to themselves? Yes, both 0 and 1 . So there are counterexamples to this statement.
b. $\forall x\left(x^{2} \neq 2\right)$. Counterexamples are $\pm \sqrt{2}$.
c. $\forall x(|x|>0)$. Is the absolute value of every real number a positive number? Almost every real number, but 0^{2} is not positive. So a counterexample for part c is $x=0$.
52. If the universe of discourse is the set of integers, which of the following are true?
a. $\exists!x(x>1)$. False. There's more than one integer larger than 1 .
b. $\exists!x\left(x^{2}=1\right)$. False. There are two square roots of 1 , namely +1 and -1 .
c. $\exists!x(x+3=2 x)$. True. The unique solution is $x=3$.
d. $\exists!x(x=x+1)$. False. There are no solutions to this equation.

Math 114 Home Page ht http://math.clarku.edu/
$\sim \sim$ djoyce/ma114/

