Section 1.6, selected answers
Math 114 Discrete Mathematics
D Joyce, Spring 2018
6. Use a direct proof to show that the product of two odd integers is odd.

Use the definition that n is an odd when $\exists k, n=2 k+1$. There are various wordings you can use in your proof, but they'd all have the same structure.

Let m and n be odd integers. Then $\exists k, n=2 k+1$ and $\exists j, m=2 j+1$. Then the product $m n$ equals $(2 k+1)(2 j+1)$ which can be written as $2(2 j k+k+j)+1$ which shows that $\exists i, m n=2 i+1$, namely $i=2 j k+k+j . \quad$ Q.E.D.
10. Use a direct proof to show that the product of two rational numbers is also rational.

Suppose that x and y are both rational. Then there are integers m and n so that $x=m / n$, and there are integers p and q so that $y=p / q$. Multiplying, we can conclude $x y=(m p) /(n q)$. That exhibits $x y$ as a quotient of integers. Therefore the product $x y$ is also rational. Q.E.D.
11. Prove or disprove that the product of two irrational numbers is irrational.

This is false, and all you have to do is exhibit a counterexample.

Since the two irrational numbers $\sqrt{2}$ and $\sqrt{2}$ have the rational number 2 as their product, it is not the case that the product of two irrational numbers is always irrational.
39. Prove that at least one of the real numbers $a_{1}, a_{2}, \ldots, a_{n}$ is greater than or equal to the average of these numbers. What kind of proof did you use?
Almost surely the proof you came up with is a nonconstructive existential proof in the form of an indirect proof.

Suppose every a_{i} is less than the average

$$
\bar{a}=\left(a_{1}+a_{2}+\cdots+a_{n}\right) / n .
$$

That is, $a_{1}<\bar{a}, a_{2}<\bar{a}, \ldots, a_{n}<\bar{a}$. Add these n inequalities together to get $a_{1}+a_{2}+\cdots+a_{n}<n \bar{a}$. But $n \bar{a}=a_{1}+a_{2}+\cdots+a_{n}$. But, as Euclid would say, it is absurd that a number be both less than and equal to itself. Therefore, not every a_{i} is less than the average. Thus, some a_{i} is greater than or equal to the average. Q.E.D.

| Math 114 Home Page http://math.clarku.edu/ |
| :--- | :--- |
| \sim djoyce/ma114/ |

