Section 1.7, selected answers
Math 114 Discrete Mathematics
D Joyce, Spring 2018
12. Prove or disprove that if a and b are rational numbers, then a^{b} is also rational.
Let $a=m / n$ and $b=j / k$ where m, n, j, and k are integers. Is the expression

$$
(m / n)^{j / k}=\sqrt[k]{(m / n)^{j}}
$$

always rational? It is if $k= \pm 1$, not always otherwise. Take, for example, $k=2, j=1, a=2$. Then $a^{b}=\sqrt{2}$, which we know is not rational.

Thus, we've disproved the statement by finding a counterexample.
22. The quadratic mean of two real numbers x and y equals $\sqrt{\left(x^{2}+y^{2}\right) / 2}$. Formulate a conjecture about the relative sizes of arithmetic and quadratic means of positive numbers, and prove your conjecture.

A small table of values probably enough. It would be a good idea to use some numbers that are very large and others that are very small. You'll probably note very soon that if $x=y$ then the two means are the same. Also, if x is near 0 while y is very large, then the arithmetic mean is about $y / 2$ while the quadratic mean is about $y / \sqrt{2}$, which is larger. After a while you probably conjectured that the quadratic mean is no less than the aritmetic mean,

$$
\sqrt{\left(x^{2}+y^{2}\right) / 2} \geq(x+y) / 2 .
$$

Next, to prove it, you likely reduced the problem to a simpler one. Since all the numbers involved are positive, the required inequality can be squared to get an equivalent inequality.

$$
\left(x^{2}+y^{2}\right) / 2 \geq(x+y)^{2} / 4
$$

More algebraic operations can be applied to the inequality to simplify it further, first $2 x^{2}+2 y^{2} \geq x^{2}+2 x y+y^{2}$, then

$$
x^{2}+y^{2} \geq 2 x y
$$

At some point in your investigation, you may have needed a little inspiration to continue. You might have written the last inequality as

$$
x^{2}-2 x y+y^{2} \geq 0
$$

and noticed that the term $x^{2}-2 x y+y^{2}$ equals $(x-y)^{2}$. But

$$
(x-y)^{2} \geq 0
$$

since the square of every real number is nonnegative. Thus, by a series logical equivalences, you reduced the inequality to a known inequality, thus proving the theorem.

| Math 114 Home Page at http://math.clarku.edu/ |
| :--- | :--- |
| \sim djoyce/ma114/ |

