Section 2.2, selected answers
Math 114 Discrete Mathematics
D Joyce, Spring 2018
2. Suppose that A is the set of sophomores at your school and B is the set of students in discrete math at your school. Express each of the following sets in terms of A and B.
a. The set of sophomores taking discrete math at your school.

That's the intersection $A \cap B$.
b. The set of sophomores at your school who are not taking discrete math.

This is the difference $A-B$. It can also be expressed by intersection and complement $A \cap \bar{B}$.
c. The set of students at your school who either are sophomores or are taking discrete math.

The union $A \cup B$.
d. The set of students at your school who either are not sophomores or are not taking discrete math.

Literally, it's $\bar{A} \cup \bar{B}$. That's the same as $\overline{A \cap B}$.
4. Let $A=\{a, b, c, d, e\}$ and $B=\{a, b, c, d, e, f, g, h\}$. Find
a. $A \cup B$. That's just B since every element of A is also an element of B.
b. $A \cap B$. That's just A in this case.
c. $A-B$. This is \emptyset since there are no elements of A that aren't elements of B.
d. $B-A$. That's $\{f, g, h\}$, since those are the three elements in B that aren't in A.
6. Show the identity laws in Table 1. Besides the methods given here, you could use Venn diagrams or just explain things in words.
a. Show $A \cup \emptyset=A$. Use the fact that $x \in \emptyset$ is always false.

$$
\begin{aligned}
A \cup \emptyset & =\{x \mid x \in A \vee x \in \emptyset\} \\
& =\{x \mid x \in A\}=A
\end{aligned}
$$

7. Show the "domination" laws in Table 1.
b. Show $A \cup U=U$. Here, U is the universal set, i.e., the domain of discourse, so $x \in U$ is always true.

$$
\begin{aligned}
A \cup U & =\{x \mid x \in A \vee x \in U\} \\
& =\{x \mid x \in U\}=U
\end{aligned}
$$

16. Proofs involving subsets. There are various styles you can use to present your proofs. Here, the proofs given for parts \mathbf{a} and \mathbf{b} stick with sets, but the proof for part \mathbf{e} uses elements. You can also use Venn diagrams, but be sure to explain what the diagrams say if you use them.
a. Prove $A \cap B \subseteq A$. This corresponds to the tautology $P \wedge Q \Rightarrow P$.

$$
\begin{aligned}
A \cap B & =\{x \mid x \in A \wedge x \in B\} \\
& \subseteq\{x \mid x \in A\}=A
\end{aligned}
$$

b. Prove $A \subseteq A \cup B$. This corresponds to the tautology $P \Rightarrow P \vee Q$.

$$
\begin{aligned}
A & =\{x \mid x \in A\} \\
& \subseteq\{x \mid x \in A \vee x \in B\}=A \cup B
\end{aligned}
$$

e. Prove $A \cup(B-A)=A \cup B$.

$$
\begin{array}{ll}
& x \in A \cup(B-A) \\
\Longleftrightarrow & x \in A \vee x \in(B-A) \\
\Longleftrightarrow & x \in A \vee(x \in B \wedge x \notin A) \\
\Longleftrightarrow & (x \in A \vee x \in B) \wedge(x \in A \vee x \notin A) \\
\Longleftrightarrow & x \in A \vee x \in B \\
\Longleftrightarrow & x \in A \cup B
\end{array}
$$

Thus, $A \cup(B-A)$ and $A \cup B$ have the same elements, so they're equal.
23. Prove the distributive law

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

It's enough to say that it follows directly from the distributive law for propositional logic $P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)$. But if you like, you can prove it directly. Such a proof is almost identical to proving the corresponding logical distributive law; it just needs extra notation to make it set theoretical.
30. Can you conclude that $A=B$ when
a. $A \cup C=B \cup C$? No, C could cover their differences. Example: $A=\{a\}, B=\{b\}$, and $C=\{a, b\}$.
b. $A \cap C=B \cap C$? No, C could cut out their differences. Example: $A=\{a\}, B=\{b\}$, and $C=\emptyset$.
c. $A \cup B=B \cup C$ and $A \cap B=B \cap C$? No. This is harder to find a counterexample than the previous parts. But if both A and C are \emptyset, then both conditions are true, so B could be any set.
32. Find the symmetric difference of the sets $\{1,3,5\}$ and $\{1,2,3\}$.

The elements that are in exactly one of the two sets are 2 and 5 . Therefore, the symmetric difference is $\{2,5\}$.
36. Show that $A \oplus B=(A \cup B)-(A \cap B)$.

There isn't much to say. An element is in $A \oplus B$ iff it's in exactly one of the two sets A and B. That means it is in at least one of A or B, but not both, in other words, it is in $A \cup B$ but not in $A \cap B$, and that just says it's in $(A \cup B)-(A \cap B)$.

38b. Prove $(A \oplus B) \oplus B=A$.
One way is to use a truth table to cover all the cases.

$x \in A$	$x \in B$	$x \in A \oplus B$	$x \in(A \oplus B) \oplus B$
T	T	F	T
T	F	T	T
F	T	T	F
F	F	F	F

Since the column under A and the column under $(A \oplus B) \oplus B$ are the same, therefore the two sets are equal.
40. Is symmetric difference associative?

Yes, and you can see that most easily using a truth table for all eight cases.

In the process of proving this, you'll discover that $A \oplus B \oplus$ C consists of elements that belong to either 0 or 2 of the sets A, B, and C. More generally, the continued symmetric difference $A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ consists of those elements that belong to an even number of the sets $A_{1}, A_{2}, \ldots, A_{n}$.

Math 114 Home Page at http://math.clarku.edu/ ~djoyce/ma114/

