Section 3.2, selected answers
Math 114 Discrete Mathematics
D Joyce, Spring 2018
2. Determine whether each of these functions is $\mathcal{O}\left(x^{2}\right)$.
a. $f(x)=17 x+11$. Yes. By theorem 1, any linear function is $\mathcal{O}(x)$, and since any $\mathcal{O}(x)$ function is also $\mathcal{O}\left(x^{2}\right)$, this function is $\mathcal{O}\left(x^{2}\right)$.
b. $f(x)=x^{2}+1000$. Yes. By theorem 1, any quadratic function is $\mathcal{O}\left(x^{2}\right)$.
c. $f(x)=x \log x$. Yes. We know x is $\mathcal{O}(x)$. We also know $\log x$ is $\mathcal{O}(x)$. Therefore, their product is $\mathcal{O}\left(x^{2}\right)$.
d. $f(x)=x^{4} / 2$. Theorem 4 is a strengthening of theorem 1. It implies this degree 4 polynomial of $\mathcal{O}\left(x^{4}\right)$, but it not $\mathcal{O}\left(x^{n}\right)$ for any $n<4$. Therefore, this function is not $\mathcal{O}\left(x^{2}\right)$.
e. $f(x)=2^{x}$. This exponential function is not $\mathcal{O}\left(x^{2}\right)$.
f. $f(x)=\lfloor x\rfloor \cdot\lceil x\rceil$. Both floor and ceiling are $\mathcal{O}(x)$, so their product is $\mathcal{O}\left(x^{2}\right)$.
8. Find the least integer n such that $f(x)$ is $\mathcal{O}\left(x^{n}\right)$ for each of these functions.
a. $f(x)=2 x^{2}+x^{3} \log x$. Since x^{3} dominates x^{2}, we can ignore the first term and concentrate on the second term, $x^{3} \log x$. Since $x^{3} \log x$ is $\mathcal{O}\left(x^{4}\right)$, but it's not $\mathcal{O}\left(x^{3}\right)$, the n we're looking for here is 4 .
b. $f(x)=3 x^{5}+(\log x)^{4}$. Any positive power of x dominates any power of $\log x$, so we can ignore the second term. Then, f is $\mathcal{O}\left(x^{5}\right)$.
c. $f(x)=\left(x^{4}+x^{2}+1\right) /\left(x^{4}+1\right)$. Divide the denominator into the numerator in order to write the function as

$$
f(x)=1+\frac{x^{2}}{x^{4}+1} .
$$

Since the fraction is $\mathcal{O}(1)$, therefore $f(x)$ is $\mathcal{O}(1)$.
d. $f(x)=\left(x^{3}+5 \log x\right) /\left(x^{4}+1\right)$. The denominator is bigger than the numerator! Since x^{4} dominates 1 , and x^{3} dominates $\log x$, we can disregard
those terms and reduce the problem to finding the order of x^{3} / x^{4}, but that's just x^{-1}. Thus $f(x)$ is $\mathcal{O}\left(x^{-1}\right)$, and the n we're looking for is -1 .
20. Find the order of these functions.
a. $\left(n^{3}+n^{2} \log n\right)(\log n+1)+(17 \log n+19)\left(n^{3}+2\right)$. Whenever you've got the sum of two terms, ignore the smaller one. Then this expression simplifies to $n^{3} \log n+17 n^{2} \log n$. We can drop the constant 17 . Also, since $\log n$ is $\mathcal{O}(n)$, therefore $n^{2} \log n$ is $\mathcal{O}\left(n^{3}\right)$. Thus, this function is on the order of $n^{3} \log n$.
b. $\left(2^{n}+n^{2}\right)\left(n^{3}+3^{n}\right)$. Since 2^{n} dominates n^{2}, and 3^{n} dominates n^{3}, this is on the order of $2^{n} \cdot 3^{n}$, which is 6^{n}.
c. $\left(n^{n}+n 2^{n}+5^{n}\right)\left(n!+5^{n}\right)$. The function n^{n} dominates both $n 2^{n}$ and 5^{n}, while $n!$ dominates 5^{n}, so this function is on the order of $n^{n} \cdot n$!

Math 114 Home Page at http://math.clarku. edu/~djoyce/ma114/

