
Section 3.3, selected answers
Math 114 Discrete Mathematics

D Joyce, Spring 2018

8. Consider “Horner’s method” for evaluating
polynomials as described in the text.

a. Evaluate 3x2 + x + 1 at x = 2 by working
through each step of the algorithm. Here, we’re
treating the polynomial 3x2 + x + 1 as if it were
written (3x + 1)x + 1 and computing first what’s
inside the parentheses. More generally, a polyno-
mial

anx
n + an−1x

n−1 + an−2x
n−2 + . . . + a1x

1 + a0

is computed as if it were written

(. . . ((anx + an−1)x + an−2)x + . . . + a1)x + a0.

The details of computation for the specific example
look like this:

Multiply 3 by 2 to get 6
Add 1 to get 7
Multiply that by 2 to get 14
Add 1 to get 15, the answer.

b. How many multiplications and additions are
needed?

n multiplications; n additions. Note that there
were only half as many multiplications needed as
in problem 7. Multiplications take the most time,
so this algorithm is about twice as fast as the naive
algorithm in problem 7.

9. How large a problem can be solved in 1 sec-
ond using an algorithm that requires f(n) bit op-
erations, where each bit operation is carried out in
10−9 seconds, with the following values for f(n)?

A nanosecond is 10−9 seconds. So 109 operations
can be executed in a second. So the question be-
comes How large is n so that n = 109.

a. log n? If log n is a billion (109), then what is
n? These logs are base 2. In general,

log2 n = x iff n = 2x

Therefore, n = 21000000000. That’s a huge number.
Since 210 is about 103, therefore 21000000000 is about
10300000000. That’s 1 followed by 300 million 0s. It’s
too big to imagine! Algorithms that are O(log n)
are really speedy.

b. n? Then n is a billion, of course. O(n) is
pretty speedy.

c. n log n? Well, n log n = 1000000000 isn’t eas-
ily solved for n. Using a calculator, you can fig-
ure it out to be about n = 40000000, 40 million.
O(n log n) is still pretty speedy.

d. n2? Well, n2 = 1000000000 gives n =√
1000000000, which is about 31623. Not such a big

number. O(n2) is not nearly as good as O(n log n).

e. 2n? So, 2n = 1000000000. To solve for n,
take log2 of each side. Then n = log2 1000000000
which is about 30 (since log2 1000 is about 10). So
exponential algorithms only work for small n.

f. n! ? Even when n is pretty small, its fac-
torial can be pretty big. For instance, 12! =
479001600, which is about half a billion, while
13! = 6227020800, which is about 6 billion. So
n = 12 is the largest value of n that can be treated
in less than a second. Factorial algorithms are so
slow, they only work for very small n.

Math 114 Home Page at http://math.clarku.

edu/~djoyce/ma114/

1

http://math.clarku.edu/~djoyce/ma114/
http://math.clarku.edu/~djoyce/ma114/
http://math.clarku.edu/~djoyce/ma114/

