Section 3.4, selected answers Math 114 Discrete Mathematics D Joyce, Spring 2018

2. Show that if a is an integer other than 0, then

a. 1 divides a. But of course, $1 \cdot a = a$, so 1 divides a.

b. *a* divides 0. For sure, since $a \cdot 0 = 0$.

6. Prove a|c and b|d implies ab|cd.

There's not much choice for this proof. A direct proof that relies only on the definition and a little algebra is enough.

Proof: Suppose a|c and b|d. Then there are numbers e and f such that ae = c and bf = d. Therefore aebf = cd. But (ab)(ef) = cd, therefore ab|cd. Q.E.D.

11. Let *m* be a positive integer. Show that *a* mod $m = b \mod m$ if $a \equiv b \pmod{m}$.

This is a more complicated proof, and yours may not look much like theone I came up with.

Proof. Suppose $a \equiv b \pmod{m}$. Then m | (a - b). Let $a \mod m$ be r, and let $b \mod m$ be s. That means

$$a = mq + r$$

where $0 \le r < m$ and q is some integer; also

$$b = mt + s$$

where $0 \le s < m$ and t is some integer. Subtracting we find that

$$a - b = m(q - t) + (r - s).$$

But *m* divides a - b, so *m* divides m(q - t) + (r - s), and since *m* divides m(q - t), therefore *m* also divides r - s. But r - s is a number greater than -m and less than *m*, and the only number in that range that *m* divides is 0. Hence, r - s = 0, so r = s. Therefore $a \mod m = b \mod m$. Q.E.D.

16. Evaluate these quantities.

a. $-17 \mod 2$. Since -17 is negative, you have to be a little careful. Any integer modulo 2 has to be either 0 or 1, and since -17 is odd, therefore $-17 \mod 2 = 1$.

b. 144 mod 7. When you divide 7 into 144, you get a remainder of 4, so 144 mod 7 = 4.

c. $-101 \mod 13$. Any integer modulo 13 has to be some integer from 0 through 12, inclusive. Now, $101 \mod 13 = 10$, so $-101 \mod 13$ has to be congruent to $-10 \mod 13$, but some integer between 0 and 12. Adding 13 to -10 gives 3, so $-101 \mod 13 = 3$. For the most part, we're not interested in negative numbers, but it's nice that the definition covers them.

d. 199 mod 19. When you divide 19 into 199, you get a remainder of 9, so $199 \mod 19 = 9$.

Math 114 Home Page at http://math.clarku. edu/~djoyce/ma114/