Section 3.4, selected answers
Math 114 Discrete Mathematics
D Joyce, Spring 2018
2. Show that if a is an integer other than 0 , then
a. 1 divides a. But of course, $1 \cdot a=a$, so 1 divides a.
b. a divides 0 . For sure, since $a \cdot 0=0$.
6. Prove $a \mid c$ and $b \mid d$ implies $a b \mid c d$.

There's not much choice for this proof. A direct proof that relies only on the definition and a little algebra is enough.

Proof: Suppose $a \mid c$ and $b \mid d$. Then there are numbers e and f such that $a e=c$ and $b f=d$. Therefore $a e b f=c d$. But $(a b)(e f)=c d$, therefore $a b \mid c d$.
Q.E.D.
11. Let m be a positive integer. Show that $a \bmod$ $m=b \bmod m$ if $a \equiv b(\bmod m)$.
This is a more complicated proof, and yours may not look much like theone I came up with.

Proof: Suppose $a \equiv b(\bmod m)$. Then $m \mid(a-b)$. Let $a \bmod m$ be r, and let $b \bmod m$ be s. That means

$$
a=m q+r
$$

where $0 \leq r<m$ and q is some integer; also

$$
b=m t+s
$$

where $0 \leq s<m$ and t is some integer. Subtracting we find that

$$
a-b=m(q-t)+(r-s) .
$$

But m divides $a-b$, so m divides $m(q-t)+(r-$ s), and since m divides $m(q-t)$, therefore m also divides $r-s$. But $r-s$ is a number greater than $-m$ and less than m, and the only number in that range that m divides is 0 . Hence, $r-s=0$, so $r=s$. Therefore $a \bmod m=b \bmod m$. Q.E.D.
16. Evaluate these quantities.
a. $-17 \bmod 2$. Since -17 is negative, you have to be a little careful. Any integer modulo 2 has to be either 0 or 1 , and since -17 is odd, therefore $-17 \bmod 2=1$.
b. $144 \bmod 7$. When you divide 7 into 144 , you get a remainder of 4 , so $144 \bmod 7=4$.
c. $-101 \bmod 13$. Any integer modulo 13 has to be some integer from 0 through 12, inclusive. Now, $101 \bmod 13=10$, so $-101 \bmod 13$ has to be congruent to -10 modulo 13 , but some integer between 0 and 12. Adding 13 to -10 gives 3 , so $-101 \bmod 13=3$. For the most part, we're not interested in negative numbers, but it's nice that the definition covers them.
d. $199 \bmod 19$. When you divide 19 into 199 , you get a remainder of 9 , so $199 \bmod 19=9$.

Math 114 Home Page at http://math.clarku. edu/~djoyce/ma114/

