Section 3.5, selected answers Math 114 Discrete Mathematics

D Joyce, Spring 2018
4. Find the prime factorization of each of the following.
a. $39=3 \cdot 13$.
b. $81=3^{4}$.
c. 101 is prime! You only have to check that 2 , 3,5 , and 7 don't divide it.
d. $143=11 \cdot 13$.
e. $289=17^{2}$.
f. 899 is prime. Well, let's check the first few primes to see if any of them divide it. A calculator might help here to save time. $2,3,5,7,11,13$, 17, 19, and 23 all don't divide 899. But 29 does. $899=29 \cdot 31$.
14. A number is perfect if it equals the sum of its proper divisors.
a. Show that 6 and 28 are perfect. $6=1+2+3$. $28=1+2+4+7+14$.
b. Show that $2^{p-1}\left(2^{p}-1\right)$ is perfect when $2^{p}-1$ is prime. Suppose $2^{p}-1$ is prime. Then its only factors are 1 and itself. The factors of 2^{p-1} are the powers of 2 from 2^{0} through 2^{p-1}. Since 2^{p-1} and $2^{p}-1$ are relatively prime, therefore the factors of $2^{p-1}\left(2^{p}-1\right)$ are (1) the powers of 2 from 2^{0} through 2^{p-1}, and (2) those numbers times $2^{p}-1$. So the proper factors are

$$
1,2,4, \ldots, 2^{p-1}
$$

and

$$
2^{p}-1,2\left(2^{p}-1\right), 4\left(2^{p}-1\right), \ldots, 2^{p-2}\left(2^{p}-1\right) .
$$

The first row is a geometric series whose sum is $2^{p}-1$. The second is also a geometric series whose sum is $\left(2^{p-1}-1\right)\left(2^{p}-1\right)$. Adding these two sums together gives $2^{p-1}\left(2^{p}-1\right)$. Thus, $2^{p-1}\left(2^{p}-1\right)$ is the sum of its proper divisors, and so it is a perfect number.
20. What are the greatest common divisors of the following pairs of integers?
a. $2^{2} \cdot 3^{3} \cdot 5^{5}$ and $2^{5} \cdot 3^{3} \cdot 5^{2}$. For the powers of each prime take the minimum of the power in the first and in the second number. For example, in the first number 2 appears to the power 2, but in the second it appears to the power 5 , so in the GCD 2 will appear to the power 2 , the minimum of 2 and 5 . The GCD is $2^{2} \cdot 3^{3} \cdot 5^{2}$.
b. $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$ and $2^{11} \cdot 3^{9} \cdot 11 \cdot 17^{14}$. If a prime only appears in one of the numbers, then it won't appear in the GCD. Answer: $2 \cdot 3 \cdot 11$.
c. 17 and 17^{17}. The first divides the second, so it will be the GCD.
d. $2^{2} \cdot 7$ and $5^{3} \cdot 13$. These numbers are relatively prime, so the GCD is 1 .
e. 0 and 5 . Since 5 divides 0 , it's the GCD.
f. $2 \cdot 3 \cdot 5 \cdot 7$ and itself. The GCD of any number and itself is just itself.

Math 114 Home Page at http://math.clarku.
edu/~djoyce/ma114/

