Section 3.6, selected answers Math 114 Discrete Mathematics

D Joyce, Spring 2018
2. Convert from decimal to binary.
a. 231. Here's an easy way. Repeatedly halve, marking the odd numbers.

231	1
115	1
57	1
28	0
14	0
7	1
3	1
1	1

Then read up to get the binary form: 11100111.
3. Convert from binary to decimal.
d. 11010010001 0000. Here's one way. Starting with the left 1 , repeatedly double and add the next digit.

$$
\begin{aligned}
1 & =1 \\
2+1 & =3 \\
6+0 & =6 . \\
12+1 & =13 \\
26+0 & =26 \\
52+0 & =52 . \\
104+1 & =105 \\
210+0 & =210 . \\
420+0 & =420 . \\
840+0 & =840 . \\
1680+1 & =1681 . \\
3362+0 & =3362 \\
6724+0 & =6724 . \\
13448+0 & =13448 . \\
26896+0 & =26896 .
\end{aligned}
$$

8. Convert each of the following integers from binary notation to hexadecimal notation.

This is easy, and that's the whole reason for using hex in the first place. Each group of 4 bits is named be one hex digit.
a. 11110111 . Four ones gives the decimal 15, which is the hex digit f, while 0111 gives 7 . So f7 is the hex equivalent.
b. 10101010 1010. 1010 in base 2 gives the decimal 12, which is c in hex. So ccc is the hex equivalent.
c. 111011101110111 . These are all 7s. 7777 .
24. Use the Euclidean algorithm to find GCDs.

Repeatedly replace the larger by the remainder after dividing by the smaller.
a. $\operatorname{GCD}(1,5)=\operatorname{GCD}(1,0)=1$.
b. $\operatorname{GCD}(100,101)=\operatorname{GCD}(100,1)=\operatorname{GCD}(0,1)=$ 1.
c. $\operatorname{GCD}(123,277)=\operatorname{GCD}(123,31)=$ $\operatorname{GCD}(30,31)=\operatorname{GCD}(30,1)=\operatorname{GCD}(0,1)=1$.
d. $\operatorname{GCD}(1529,14039)=\operatorname{GCD}(1529,278)=$ $\operatorname{GCD}(139,278)=\operatorname{GCD}(139,0)=139$.
e. $\operatorname{GCD}(1529,14038)=\operatorname{GCD}(1529,277)=$ $\operatorname{GCD}(144,277)=\operatorname{GCD}(144,133)=\operatorname{GCD}(11,133)=$ $\operatorname{GCD}(11,1)=\operatorname{GCD}(0,1)=1$.
f. $\operatorname{GCD}(11111,111111)=\operatorname{GCD}(11111,1)=$ $\operatorname{GCD}(0,1)=1$.

Math 114 Home Page at http://math.clarku.
edu/~djoyce/ma114/

