Math 114 Discrete Mathematics

Section 3.7, selected answers
D Joyce, Spring 2018
2. Express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.
a. 9, 11. The GCD is 1 . We need to find 1 as a linear combination of 9 and 11. These are small enough numbers so we can do it by searching. We need to find a multiple of 9 that is one more or less than a multiple of 11 . The multiples of 9 are $9,18,27,36,45$. Stop. 45 is 1 more than 44 . That is $9 \cdot 5=1+4 \cdot 11$. Thus,

$$
1=(-5) \cdot 9+4 \cdot 11
$$

expresses the GCD of 9 and 11, namely, 1 , as a linear combination of 9 and 11.
b. 33,44 . The GCD is 11 , but 11 is $44-33$, thus

$$
11=(-1) \cdot 33+1 \cdot 44
$$

expresses 11 as a linear combination of 33 and 44 .
c. 35,78 . The numbers are getting larger. A search would work, but the general method is probably just as fast. We'll use the Euclidean algorithm keeping track of our computations and build the answer from that.

$$
\begin{aligned}
78 & =2 \cdot 35+8 \\
35 & =4 \cdot 8+3 \\
8 & =2 \cdot 3+2 \\
3 & =1 \cdot 2+1
\end{aligned}
$$

Now, build up the answer starting with the last equation

$$
\begin{aligned}
1 & =3-2 \\
& =3-(8-2 \cdot 3) \\
& =3 \cdot 3-8 \\
& =3 \cdot(35-4 \cdot 8)-8 \\
& =3 \cdot 35-13 \cdot 8 \\
& =3 \cdot 35-13 \cdot(78-2 \cdot 35) \\
& =29 \cdot 35-13 \cdot 78
\end{aligned}
$$

6. Find an inverse of 2 modulo 17 .

Which multiple of 2 is one more than $17 ? 2$ times 9 equals 18. Thus,

$$
2 \cdot 9 \equiv 1(\bmod 17)
$$

so 8 is an inverse of 2 modulo 17 .
18. Find all solutions to the system of congruences

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 1(\bmod 4) \\
& x \equiv 3(\bmod 5)
\end{aligned}
$$

The numbers are small enough to search for answer. The least common multiple of 3,4 , and 5 is 60 , so we only have to look for a integer x less than 60 that satisfies all three congruences. Even though it can be done by a search, I'll show here how to solve it with the algorithm given in the text. (There are many others.)

Following the notation in the text,

$$
\begin{gathered}
a_{1}=2, a_{2}=1, a_{3}=3 \\
m_{1}=3, m_{2}=4, m_{3}=5
\end{gathered}
$$

Then $m=m_{1} m_{2} m_{3}=60$. Next,

$$
M_{1}=m / m_{1}=20, M_{2}=m / m_{2}=15, M_{3}=m / m_{3}=12
$$

Now we need to find inverses y_{k} for M_{K} modulo m_{k}. First we need y_{1} so that $M_{1} y_{1} \equiv 1\left(\bmod m_{1}\right)$, that is, $20 y_{1} \equiv 1(\bmod 3) . \quad y_{1}=2$ works. Second, solve $M_{2} y_{2} \equiv$ $1\left(\bmod m_{2}\right)$, that is, $15 y_{2} \equiv 1(\bmod 4) . \quad y_{2}=3$ works. Third, solve $M_{3} y_{3} \equiv 1\left(\bmod m_{3}\right)$, that is, $12 y_{3} \equiv 1(\bmod 5)$. $y_{3}=3$ works.

We get our answer

$$
\begin{aligned}
x & =a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+a_{3} M_{3} y_{3} \\
& =2 \cdot 20 \cdot 2+1 \cdot 15 \cdot 3+3 \cdot 12 \cdot 3 \\
& =233
\end{aligned}
$$

and we can reduce our answer modulo $m=60$ to get $x=53$.

| Math 114 Home Page | |
| :--- | :--- | :--- |
| \sim | http://math.clarku.edu/ |

