Math 114 Discrete Mathematics
Section 4.1, selected answers
D Joyce, Spring 2018
9. Find a formula for the sum of the first n even positive integers, and use mathematical induction to prove your formula is correct.

n	1	2	3	4	5	6
$2 n$	2	4	6	8	10	12
Σ	2	6	12	20	30	42

It appears that the sum $\sum_{k=1}^{n} 2 k$ is $n^{2}+n$.
To prove it using math induction, first check the base case. Is the sum of the first $n=1$ even number (which is just 2) equal to $1^{2}+1$? Yes, it is.

Next, the inductive step. Assume the inductive hypothesis $P(n)$:

$$
\sum_{k=1}^{n} 2 k=n^{2}+n
$$

is true, and prove that $P(n+1)$:

$$
\sum_{k=1}^{n+1} 2 k=(n+1)^{2}+(n+1)
$$

is also true. Starting with the LHS

$$
\sum_{k=1}^{n+1} 2 k=\left(\sum_{k=1}^{n} 2 k\right)+2(n+1)
$$

which, by the inductive hypothesis,

$$
=\left(n^{2}+n\right)+2(n+1)
$$

With a little algebra, that can be written as the RHS:

$$
=n^{2}+2 n+1+n+1=(n+1)^{2}+(n+1)
$$

Therefore, the inductive step is valid and the proof is complete.
10. Find a formula for

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}
$$

by examining the values of this expression for small values of n. Use mathematical induction to prove your result.

Start by doing the additions, not with a calculator, but by hand. If you use a calculator, you probably won't see the pattern.

$$
\begin{aligned}
\frac{1}{1 \cdot 2} & =\frac{1}{2} \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3} & =\frac{2}{3} \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4} & =\frac{3}{4}
\end{aligned}
$$

Aha! The pattern suggests that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

Now, to prove it. The first line shows it's true for the base case.

Next, the inductive step. Assume the inductive hypothesis

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

and prove that
$\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}=\frac{n+1}{n+2}$.
By the inductive hypothesis, the LHS

$$
=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}
$$

But that simplifies to

$$
=\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}
$$

and that reduces to the RHS.
Therefore, the inductive step is valid, and the proof is complete.
14. Prove that for every positive integer n,

$$
\sum_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2
$$

The base is when $n=1$. In that case, the equation says that $1 \cdot 2^{1}=(1-1) 2^{1+1}+2$, which is true.

For the inductive step, we assume the inductive hypothesis that for a given value of n,

$$
\sum_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2
$$

and we have to show that for the next value of n, namely $n+1$, that

$$
\sum_{k=1}^{n+1} k 2^{k}=((n+1)-1) 2^{(n+1+1}+2
$$

that is, that

$$
\sum_{k=1}^{n+1} k 2^{k}=n 2^{(n+2}+2
$$

16. Use mathematical induction to prove that

$$
\begin{aligned}
& 1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots+n(n+1)(n+2) \\
& \quad=n(n+1)(n+2)(n+3) / 4
\end{aligned}
$$

Let's denote the left hand side of this equation by LHS (n) and the right hand side by $\operatorname{RHS}(n)$.

You have to decide what the base case is. Is it $n=0$ or $n=1$? It isn't clear from the statement of the problem. If you take $n=0$ to be the base case, then $\operatorname{LHS}(0)$ is an empty sum, and an empty sum is 0 . But $\operatorname{RHS}(0)$ is $0 \cdot 1 \cdot 2 \cdot 3 / 4$, which is also 0 . The other choice for a base case is $n=1$. Then $\operatorname{LHS}(1)$ is $1 \cdot 2 \cdot 3$, while $\operatorname{RHS}(1) 1 \cdot 2 \cdot 3 \cdot 4 / 4$, so the two sides are equal. So, the base case is taken care of either with $n=0$ or with $n=1$.

Now for the inductive step. Suppose that the statement is true for n, that is, $\operatorname{LHS}(n)=\operatorname{RHS}(n)$. We have to prove that it's true for $n+1$, that is, $\operatorname{LHS}(n+1)=\operatorname{RHS}(n+1)$, which written is full is
$1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots+(n+1)(n+2)(n+2)=$ $(n+1)(n+2)(n+3)(n+4) / 4$.

The only difference between the LHS (n) and $\operatorname{LHS}(n+1)$ is that the latter has one more term, namely, $(n+1)(n+2)(n+2)$. That is,

$$
\operatorname{LHS}(n+1)-\operatorname{LHS}(n)=(n+1)(n+2)(n+2)
$$

If we can show that $\operatorname{RHS}(n+1)-\operatorname{RHS}(n)$ has the same value, then we may conclude $\operatorname{LHS}(n)=$ $\operatorname{RHS}(n)$ implies LHS $(n+1)=\operatorname{RHS}(n+1)$. But

$$
\begin{aligned}
& \operatorname{RHS}(n+1)-\operatorname{RHS}(n) \\
= & (n+1)(n+2)(n+3)(n+4) / 4- \\
& n(n+1)(n+2)(n+3) / 4 \\
= & ((n+4)-n)(n+1)(n+2)(n+3) / 4 \\
= & (n+1)(n+2)(n+3)
\end{aligned}
$$

That finishes the inductive step, so we've finished the proof.
21. Show that $2^{n}>n^{2}$ whenever n is an integer greater than 4 .

In this case, the base case occurs when $n=5$, so you need to check that $2^{5}>5^{2}$, which, of course, is true.

Now for the inductive step. Assume the inductive hypothesis $2^{n}>n^{2}$, where $n>4$, and prove that $2^{n+1}>(n+1)^{2}$.

$$
\begin{aligned}
2^{n+1} & =2 \cdot 2^{n} \\
& >2 n^{2}
\end{aligned}
$$

At this point, it suffices to show that $2 n^{2}>(n+$ $1)^{2}$, and that's logically equivalent to the inequality $n^{2}>2 n+1$, or $n^{2}-2 x+1>2$, that is, $(n-1)^{2}>2$. But $n>4$, so $(n-1)^{2}>9>2$. Thus, the inductive conclusion $2^{n+1}>(n+1)^{2}$ follows, and the proof is complete.

Math 114 Home Page at http://math.clarku. edu/~djoyce/ma114/

