Math 114 Discrete Mathematics
 Section 6.2, selected answers
 D Joyce, Spring 2018

7. What is the probability of these events when we randomly select a permutation of the set $\{1,2,3,4\}$.
a. 1 precedes 4 .

There are $4!=24$ permutations of the set $\{1,2,3,4\}$. How many of them put 1 before 4 ? You can find many ways to count them.

Here's a tedious way to do that. You could put 1 first, then there are 6 ways to put 2,3 , and 4 after the 1 . You could put 1 second, then there are 2 ways of putting 4 after 1 and then 2 ways of putting 2 and 3 in the remaining slots, giving 4 ways of putting 1 second. You could put 1 third, then put 4 fourth, and there are 2 ways of putting 2 and 3 in the remaining slots. You can't put 1 fourth. That gives $6+4+2=12$ ways of putting 1 before 4 . That gives a probability of $\frac{12}{24}=\frac{1}{2}$.

But there's a much easier way to find the answer. Half the permutations have 1 before the 4 , and half have 1 after the 4 . A bijection between the two sets of permutations is effected by exchanging the 1 and 4 in a permutation.

b. 4 precedes 1 .

By symmetry, the answer is the same as for part a, namely $\frac{1}{2}$.
c. 4 precedes both 1 and 2 .

A similar argument shows there are 8 permutations that have 4 before both 1 and 2 , and that gives a probability of $\frac{8}{24}=\frac{1}{3}$.
d. 4 precedes all three of 1,2 , and 3 .

Put 4 first, then there are $3!=6$ ways to place the other three. That gives a probability of $\frac{6}{24}=\frac{1}{4}$. e. 4 precedes 3 and 2 precedes 1 .

Of the $4!=24$ permutations of $\{1,2,3,4\}$, some have 4 before 3 and 2 before 1 . They are 4321, 4231, 4213, 2431, 2413, and 2143. Since there are 6 of them, the probability is $\frac{6}{24}=\frac{1}{4}$.
8. What is the probability of these events when we randomly select a permutation of the set $\{1,2, \ldots, n\}$ where $n \geq 4$?
a-b. 1 precedes 2 , or 2 precedes 1 .
The answers to part a and part b are each $\frac{1}{2}$ since either 1 precedes 2 or vice versa, and by symmetry they have the same probability.

c. 1 immediately precedes 2 .

This is a harder question. How many of the n ! permutations have 1 immediately preceding 2 ? Here's one way of counting them. Treat the pair $(1,2)$ as an individual element, and ask how many ways it can be permuted with the other $n-2$ elements. There are $(n-1)$! permutations. So of the n ! permutations of $\{1,2, \ldots, n\},(n-1)$! have 1 immediately preceding 2 . Thus, the probability is $(n-1)!/ n!$, which is $1 / n$.
d. n precedes 1 and $n-1$ precedes 2 .

There are many ways to approach this question. Here's one that uses independence of events. The probability that n precedes 1 is $\frac{1}{2}$, and the probability that $n-1$ precedes 2 is also $\frac{1}{2}$. Since whether or not n precedes 1 has nothing whatever to do with $n-1$ preceding 2 , the events are independent, and so the probabilities multiply. Therefore, the probability is $\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$.
e. n precedes 1 and n precedes 2 .

We may assume $n=3$ since the placements of the remaining elements are irrelevant. Of the 6 permutations of $\{1,2,3\}$, only 2 have 3 before both 1 and 2 , so the probability is $\frac{2}{6}=\frac{1}{3}$.
12. Suppose that E and F are events such that $p(E)=0.8$ and $p(F)=0.6$. Show that

$$
p(E \cap F) \geq 0.4
$$

The principle of inclusion and exclusion, P.I.E., says

$$
p(E \cup F)=p(E)+p(F)-p(E \cap F)
$$

Therefore,

$$
p(E \cup F)=1.4-p(E \cap F)
$$

But $p(E \cup F) \leq 1$, so

$$
1 \geq 1.4-p(E \cap F)
$$

Therefore, $p(E \cap F) \geq 1.4-1=0.4$.
17. If E and F are independent events, prove or disprove that \bar{E} and F are necessarily independent events.

Suppose that E and F are independent events. Then $p(E \cap F)=p(E) p(F)$. Now,

$$
\begin{aligned}
p(\bar{E}) p(F) & =(1-p(E)) p(F) \\
& =p(F)-p(E) p(F) \\
& =p(F)-p(E \cap F)
\end{aligned}
$$

Next note that since F is the disjoint union of $E \cap F$ and $\bar{E} \cap F$. Therefore,

$$
p(F)=p(E \cap F)+p(\bar{E} \cap F)
$$

That implies

$$
p(F)-p(E \cap F)=p(\bar{E} \cap F)
$$

Thus, we've shown that $p(\bar{E}) p(F)=p(\bar{E} \cap F)$, so that \bar{E} and F are independent events.
25. What's the conditional probability that a randomly generated bit string of length 4 contains at least two consecutive 0s, given that the first bit is a 1 ?

You could note that this conditional prob. is the same as the prob. that a string of length 3 has at least two consecutive 0s. There are three ways to do that (000,001 , and 100) out of 8 possible strings giving a probability of $\frac{3}{8}$.
26. Let E be the event that a randomly generated bit string of length three contains an odd number of 1s, and let F be the event that the string starts with a 1 . Are E and F independent?

$$
\begin{aligned}
& E=\{100,010,001,111\} \\
& F=\{100,101,110,111\} \\
& E \cap F=\{100,111\}
\end{aligned}
$$

Since $p(E \cap F)=\frac{1}{4}$, and $p(E) p(F)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$, therefore E and F are independent events.
28. Assume that the prob. a child is a boy is 0.51 and that the sexes of children born into a family are independent. What is the prob. that a family of 5 children has
a. exactly 3 boys?

There are $\binom{5}{3}=10$ possible arrangements of 3 boys among 5 children. Each arrangement has probability $0.51^{3} 0.49^{2}$. Therefore the probability of this event is $10 \cdot 0.51^{3} 0.49^{2}$, which is approximately 0.318 .
b. at least one boy?

All but one of the 32 possibilities have at least one boy, and that one occurs with probability 0.49^{5}. So the prob. of at least one boy is $1-0.49^{5}$, which is approximately 0.972 .
c. at least one girl?

That's $1-0.51^{5}$, approximately 0.965 .
d. all children of the same sex?

There are two outcomes in this event, one with prob. 0.51^{5}, the other with 0.49^{5}. Their sum is $0.51^{5}+0.49^{5}$, approximately 0.0627 .

Math 114 Home Page at http://math.clarku. edu/~djoyce/ma114/

