Math 114 Discrete Mathematics

Section 8.1, selected answers
D Joyce, Spring 2018
4. Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where $(a, b) \in R$ if and only if
a. a is taller than b.

Assuming that "taller" means strictly taller and not the same height, then R is not reflexive, but irreflexive. Also, R is antisymmetric since if a is taller than b, then you know b is shorter, not taller, than a. But R is transitive since if a is taller than b and b is taller than c, then a is taller than c.
b. a and b were born on the same day.

Reflexive since one is born on one's own birthday. Symmetric since if a was born on b 's birthday, then so too will b be born on a 's birthday. And it's transitive.
c. a has the same first name as b.

Assuming everyone has a first name, then it's reflexive. Also symmetric and transitive.
d. a and b have common grandparents.

Assume this means $\exists g$ such that g is a grandparent of both a and b. Then R is reflexive and symmetric. But not transitive: g can be a grandparent of a and b, while h is a grandparent of b and c, but a and c needn't have a common grandparent.
10. Which relations in exercise 4 are irreflexive?

Just 4a.
17. Which relations in exercise 4 are asymmetric?

The difference between asymmetric and antisymmetric is a fine point. A relation is asymmetric if both of $a R b$ and $b R a$ never happen together. A relation is antisymmetric if both of $a R b$ and $b R a$ never happens when $a \neq b$ (but might happen when $a=b$). Thus, any asymmetric relation is antisymmetric, but some antisymmetric relations aren't asymmetric. Warning: other authors may
use asymmetric and/or antisymmetric differently than Rosen.

4a is both asymmetric and antisymmetric.
24. Let R be the relation $R=\{(a, b) \mid a<b\}$ on the set of integers. Find
a. R^{-1}. The inverse relation is $\{(a, b) \mid a>b\}$.
b. \bar{R}. The complementary relation is

$$
\{(a, b) \mid a \nless b\}
$$

that is, $\{(a, b) \mid a \geq b\}$.

Math 114 Home Page at http://math.clarku.
edu/~djoyce/ma114/

