Math 114 Discrete Mathematics

Section 8.3, selected answers
D Joyce, Spring 2018
2. Represent each of these relations on the set $\{1,2,3,4\}$ with a matrix.
a. $\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$.

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

b. $\{(1,1),(1,4),(2,2),(3,3),(4,1)\}$.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

c. $\{(1,2),(1,3),(1,4),(1,2),(2,3),(2,4),(3,1)$, $(3,2),(3,4),(4,1),(4,2),(4,3)\}$.

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

d. $\{(2,4),(3,1),(3,2),(3,4)\}$.

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

5. How can the matrix representing a relation R on a set A be used to determine whether the relation is irreflexive?

Recall that R is irreflexive iff it is not the case that $a R a$ for any element a. That means the diagonal elements in the matrix are all 0 .
6. How can the matrix representing a relation R on a set A be used to determine whether the relation is aysmmetric?

Recall that R is asymmetric iff $a R b$ implies $\neg(b R a)$. That means if there's a 1 in the $i j$ entry of the matrix, then there must be a 0 in the $j i^{\text {th }}$ entry.
12. How can the matrix for R^{-1}, the inverse of the relation R, be found from the matrix representing R ?

Just reflect it across the major diagonal. That is, exchange the $i j$ th entry with the $j i$ th entry, for each i and j. The resulting matrix is called the transpose of the original matrix.
32. Determine wther the relations represented byt he graphs shown in exercises 26-28 are reflexive, irreflexive, symmetric, antisymmetric, asymmetric, and/or transitive.

For 26. It's reflexive since there's a loop on every vertex. It's not symmetric since there's an arrow from c to d, but there isn't one back. It's not antisymmetric since there are arrows both ways between a and b. Neither is it asymmetric. It's not transitive since $c \rightarrow a$ and $a \rightarrow b$, but not $c \rightarrow b$.

For 27. It's not reflexive since there's no loop at c. It is symmetric since for every arrow, there's an arrow back. It's not transitive since $c \rightarrow a$ and $a \rightarrow c$, but not $c \rightarrow c$.

For 28. It's reflexive, symmetric, and transitive. So, it's an equivalence relation.

Math 114 Home Page at http://math.clarku.
edu/~djoyce/ma114/

