Math 114 Discrete Mathematics
 Section 8.5, selected answers
 D Joyce, Spring 2018

1. Which of these relations on the set $\{0,1,2,3\}$ are equivalence relations? Determine the properties of an equivalence relation that the others lack.
a. $\{(0,0),(1,1),(2,2),(3,3)\}$.

It is an equivalence relation. In fact, it's equality, the best equivalence relation.
b. $\{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\}$.

It's not reflexive because it doesn't include $(1,1)$. It is symmetric. It's not transitive since $(0,2)$ and $(2,3)$ but not $(0,3)$.
c. $\{(0,0),(1,1),(1,2),(2,1),(2,2),(3,3)\}$.

It is an equivalence relation.
d. $\{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2)$, $(3,3)\}$.

It's reflexive and symmetric. It's not transitive since $(1,2)$ is missing.
e. $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0)$, $(2,2),(3,3)\}$.

It's reflexive, but not symmetric or transitive. $(0,2)$ is missing.
2. Which of these relations on the set of all people are equivalence relations? Determine the properties of an equivalence relation that the others lack.
a. " a and b are the same age."

This is an equivalence relation. Any relation that can be expressed using "have the same" are "are the same" is an equivalence relation.
b. " a and b have the same parents."

That's an equivalence relation, too.
c. " a and b share a common parent."

This relation is reflexive and symmetric, but not transitive. It may be that half-siblings a and b have the same father, and half-siblings b and c have the same mother, but a and c are unrelated.
d. " a and b have met."

You can interpret this so that it's reflexive if you agree that everyone has automatically met him/herself. In any case it is symmetric. It's not transitive.
e. " a and b speak a common language."

Again, this is reflexive and symmetric, but not transitive.
3. Which of the following relations on the set of all functions from \mathbf{Z} to \mathbf{Z} are equavalence relations?
a. $\{(f, g) \mid f(1)=g(1)\}$.
"Having the same value at 1 " is an equivalence relation.
b. $\{(f, g) \mid f(0)=g(0)$ or $f(1)=g(1)\}$.

This isn't transitive.
c. $\{(f, g) \mid \forall x f(x)-g(x)=1\}$.

Not reflexive since $f(x)-f(x)=0$. Notsymmetric since if $f(x)-g(x)=1$, then $g(x)-f(x)=-1$. Not transitive either, since if $f(x)-g(x)=1$ and $g(x)-h(x)=1$, then $f(x)-h(x)=2$.
d. $\{(f, g) \mid \exists C \forall x f(x)-g(x)=C\}$.
"Differing by a constant" is an equivalence relation. The graphs of the two functions are the same, except for a vertical shift. (If the functions under consideration are all differentiable, then this says they have the same derivative.)
e. $\{(f, g) \mid f(0)=g(1)$ and $f(1)=g(0)\}$.

It isn't reflexive since $f(0)=f(1)$ isn't always true. Not transitive either. For example, let $f(x)=$ $h(x)=x$ and $g(x)=1-x$. Then $f \equiv g$ and $g \equiv h$, but not $f \equiv h$.

21-23. Determine whether the relation given graphically is an equivalence relation.

For 21. No. Not transitive since $c \rightarrow a$ and $a \rightarrow d$, but not $c \rightarrow d$.

For 22. Yes.
For 23. No, not transitive since $a \rightarrow b$ and $b \rightarrow c$, but not $a \rightarrow c$.
26. What are the equivalence classes of the equivalence relations in exercise 1.

In exercise 1, parts a and c were equivalence relations.
a. Since elements are only equivalent to themselves, the equivalence classes are the four singletons: $\{0\},\{1\},\{2\}$, and $\{3\}$.
c. Since 0 and 3 are each only equivalent to themselves, while 1 and 2 are equivalent to each other, there are 3 equivalence classes and they are $\{0\},\{1,2\}$, and $\{3\}$.
28. What are the equivalence classes of the equivalence relations in exercise 3 .

In exercise 3, only parts a and d were equivalence relations.
a. $\{(f, g) \mid f(1)=g(1)\}$.

For each real number y, the set of functions whose value at 1 is y is an equivalence class.
d. $\{(f, g) \mid \exists C \forall x f(x)-g(x)=C\}$. Take any function f, and its equivalence class is $[f]$, the set of all functions of the form $f(x)+C$.

Math 114 Home Page
edu/~djoyce/ma114/

