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What is combinatorics? It’s that part of dis-
crete mathematics devoted to counting things. The
things are often sets with some kind of struc-
ture, perhaps subsets of other sets with certain
properites. There are various principles used in
combinatorics and we’ll look at some of the more
basic ones including additive and multiplicative
principles, permutations, combinations, binomial
coefficients and Pascal’s triangle.

The additive principle and the inclusion-
exclusion principle. You’ve known the additive
principle ever since you learned how to add. If you
have two disjoint sets A and B, then the cardinality
of their union is the sum of their cardinalities,

|A ∪B| = |A|+ |B|.

In other words, if none of these things are those
things, then the number of things altogether is the
sum of the number of these things and the number
of those things.

There’s actually a proof for the additive prin-
ciple, and that proof uses mathematical induction
on the cardinality of B where the base case is when
|B| = 0.

The additive principle generalizes to n sets.
Given n pairwise disjoint sets A1, A2, . . . , An, then

|A1 ∪ · · · ∪ An| = |A1|+ · · ·+ |An|.

The inclusion-exclusion principle generalizes the
additive principle to when the sets aren’t disjoint.

In the case of two sets A and B, it says

|A ∪B| = |A|+ |B| − |A ∩B|.

With three sets, it says |A ∪B ∪ C| = |A|+ |B|
+|C| − |A ∩B| − |A ∩C| − |B ∩C|+ |A ∩B ∩C|.

For four sets, you can find the cardinality of their
union by first adding the cardinalities of each of the
four sets, then subtracting the cardinalities of all six
of their double intersections, then adding the car-
dinalities of all four triple intersections, and finally
subtracting the cardinality of the quadruple inter-
section. In summary, include each set, exclude each
double intersection, include each triple intersection,
and exclude the quadruple intersection.

Of course, the inclusion-exclusion principle ex-
tends to any finite number of sets.

The multiplicative principle, choices and
stages, and tree diagrams. The basic multi-
plicative principle says that if you have m choices,
and for each choice you have n second choices, then
altogether you have mn choices.

One situation in which this occurs is when you
take the Cartesian product of two sets A and B.
The Cartesian product A×B consists of all ordered
pairs (a, b) where a ∈ A and b ∈ B. Then

|A×B| = |A| |B|.

In many of our applications, however, what the sec-
ond choices are depend on the first choice you make,
so we’re not looking at just Cartesian products of
sets.

Suppose now that you’re making choices in sev-
eral stages and the number of choices mi you can
choose from at a stage i doesn’t depend on previ-
ous choices you’ve made. Then the total number
of outcomes for n stages 1, 2, . . . , n is the product
m1m2 . . .mn.

A special case of this is the product of sets. Given
finite sets A1, A2, . . . , An, their product A1 × A2 ×
· · ·×An consists of ordered n-tuples (a1, a2, . . . , an)
where each ai belongs to the corresponding set Ai.
In order to choose one of these ordered n-tuples,
for the first stage you have a choice of choosing any
one of the elements of A1 to be a1. The number
of choices at stage 1 is the cardinality of A1. For
the second stage you have |A2| choices for a2, and
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so forth. The multiplicative principle gives us the
standard formula for the cardinality of the product

|A1 × A2 × · · · × An| =
n∏

i=1

|Ai|.

We’ll use the multiplicative principle right away
to count permutations and combinations.

Permutations. Suppose we want to count all
the ways you can rearrange the letters in ROFL.
There are a lot of them such as FROL, OLFR,
etc. These rearrangements are called permutations.
When choosing a permutation of ROFL, you have
4 choices for the first letter, 3 remaining choices
for the second (since we cant choose the first let-
ter again), 2 remaining choices for the third, and
then the fourth is forced on us. Thus there are
4 · 3 · 2 · 1 = 24 choices altogether.

Counting permutations. Our main question,
an easily answered one, is how may permutations
are there on a set A of n elements? If n is small,
say 4, then we can list all the permutations. Let’s
list all the rearrangements of abcd.

abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba

There are 24 of them.
Even when n is not small, it’s easy to deter-

mine how many permutations there are. We just
use the multiplicative principle. In the first stage,
choose one of the n elements to go first. In the
second stage, there are n − 1 remaining elements,
and choose one of them to go second. At the next
stage, chose one of the remaining n − 2 elements
to go next. And so forth until the last stage, when
there’s only one element left, so it goes last. Thus,
the number of permutations of a set of n elements
is

n(n− 1)(n− 2) · · · 2 · 1.

This last expression is usually abbreviated n! and
read “n factorial” or “factorial n” (except by some
people who like to say “n shriek” or “n bang”).

Thus, there are 4! = 24 permutations of a set
of 4 elements; 3! = 6 permutations of a set of 3
elements; 2! = 2 permutations of a set of 2 elements;
1! = 1 permutations of a set of 1 element; and
0! = 1 permutations of the empty set ∅. The last
is because the unique function ∅ → ∅ is, by our
definition, a permutation.

Tree diagrams. The stages in choosing a permu-
tation can be illustrated in a tree diagram. When
choosing a permutation of the four letters abcd
there are four stages.
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The first stage chooses one of the four letters to
go first. That gives us our first branching of the tree
at the left. After we’ve taken that branch, we’ll be
at one of the four nodes or states labelled a, b, c, or
d. At this second stage, we choose a second letter
that can’t be the same as the first. In each case
we have three choices this time, so we’ll take one of
the three branches to get to a state labelled by two
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letters. At the third stage, we’ve got two choices,
so for each state there are two branches leading to
a state labelled with three letters. At this state the
last letter is determined, so there’s only one branch
to a leaf of the tree.

Sometimes variants of permutations come up.
Here’s one. Say you want to count the permu-
tations of ROFLCOPTER. The two R’s can’t be
distinguished, so exchanging them shouldn’t count
as a different permutation. If we said that there
are 10! permutations, we would be doubly counting
them because the R’s aren’t distinguishable. There
are two O’s, too, so the actual number of distin-
guishable permutations is 10! divided by 4.

Sterling’s approximation for factorials.
Sometimes you’ll need to compute factorials of
large numbers. Sterling’s approximation helps.
The factorial function n! grows very fast with n.
James Sterling (1692–1770) this approximation for
factorials:

n! ≈ nne−n
√

2πn

This approximation is fairly good even for numbers
as small as 10 where the approximation has an error
of less than 1%. It’s accuracy increases with n.

n n! approx ratio
1 1 0.922137 1.084
2 2 1.91900 1.042
3 6 5.83621 1.028
4 24 23.5062 1.021
5 120 118.019 1.016
6 720 710.078 1.014
7 5040 4980.40 1.012
8 40320 39902.4 1.011
9 362880 359536 1.0093

10 3628800 3598690 1.0084
11 39916800 39615600 1.0076
12 479001600 475687000 1.0070

k-permutations. Sometimes we don’t want full
permutations of a set of n elements, but just par-
tial permutations. If k ≤ n, a k-permutation is an

ordered listing of just k elements of a set of n el-
ements. For instance, the 3-permutations of abcd
are these

abc bac cab dab
abd bad cad dac
acb bca cba dba
acd bcd cbd dbc
adb bda cda dca
adc bdc cdb dcb

while the 2-permutations are these

ab ba ca da
ac bc cb db
ad bd cd dc

We can determine how many k-permutations of a
set of n elements there are using the multiplicative
principle. In the first stage, choose one of the n
elements to go first. In the second stage, there are
n− 1 remaining elements, and choose one of them
to go second. At the next stage, chose one of the
remaining n− 2 elements to go next. And so forth
until the kth stage, when there are n−k+1 remain-
ing elements. Thus, the number of k-permutations
of a set of n elements is

n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
.

There is no particular standard notation for the
number of k-permutations of a set of n elements,
but you’ll see it denoted (n)k as in our text, nPk,
P n
k , and various other things. We’ll probably just

use
n!

(n− k)!
.

Definition of combinations and their relation
to partial permutations. Combinations are re-
lated to partial permutations, but order is disre-
garded, as youll see.

A combination of size k from a set S of size n is
just a subset of size k. It’s more often it’s called a
k-subset when the size is specified.

A k-subset is related to k-permutations but
they’re not the same. A k-permutation is a list-
ing of k distinct elements of S where the order of

3



the elements in the listing is relevant. But for a k-
subset, the elements are not listed in any particular
order; that is, order doesn’t matter.

Let’s take an example. Let S be the 5-element
set S = {a, b, c, d, e}. There are 5 · 4 · 3 = 60 3-
permutations of S, but there are far fewer 3-subsets
of S. For instance, one 3-subset is {a, b, c}. But
this subset is associated to 6 of the 3-permutations,
namely, abc, acb, bac, bca, cab, and cba. There are
6, of course, because there are 3! = 6 full permuta-
tions of a set of 3 elements.

In general, each k-subset is associated to k! of

the k-permutations. Since there are
n!

(n− k)!
of

the k-permutations altogether, that implies that
the number of k-subsets of a set of n elements is

exactly
n!

k!(n− k)!
.

Binomial coefficients. That last expression is

called a binomial coefficient, and it’s denoted

(
n

k

)
,

pronounced “n choose k”.

(
n

k

)
=

n!

k!(n− k)!

Thus, there are

(
n

k

)
subsets of size k in a set

of size n. Binomial coefficients are also called com-
binations, and an alternative notation for them is
nCk.

Note that this definition is relevant so long as
0 ≤ k ≤ n and n ≥ 0, where, as always, 0! = 1.

The number

(
n

k

)
of combinations of n things

chosen k at a time is usually called a binomial coef-
ficient. That’s because they occur in the expansion
of the nth power of a binomial.

A binomial is a polynomial with two terms. Let’s
take the simplest binomial, x + y, and write up a

table of its powers (x+ y)n for the first few n.

(x+ y)0 = 1
(x+ y)1 = x+ y
(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x+ y)5 = x5+5x4y+10x3y2+10x2y3+5xy4+y5

The coefficients in these polynomials, the powers
of the binomial x+ y, are the binomial coefficients.
That’s the binomial theorem.

(x+y)n =
n∑

k=0

(
n

k

)
xkyn−k =

n∑
k=0

n!

k!(n− k)!
xkyn−k.

To see why binomial coefficients count combina-
tions, consider the coefficient 6 of x2y2. When you
expand the product (x + y)(x + y)(x + y)(x + y)
you’ll get a term x2y2 if you choose an x from ex-
actly 2 of the 4 factors x+y, the y2 coming from the

remaining two factors. There are

(
4

2

)
= 6 ways of

choosing 2 of the four factors, and each one con-
tributes one x2y2, so the coefficient of x2y2 in the

product will be

(
4

2

)
.

One important identity of the many important
identities that hold for binomial coefficients is this
one: (

n

k

)
=

(
n

n− k

)
You can see why that’s true in three different ways.

First, they’re both equal to
n!

k!(n− k)!
. Second as

coefficients in the expansion of (x+ y)n, the coeffi-
cient of xkyn−k is equal to the coefficient of ykxn−k.
And third, each subset of k elements in a set of size
n has a complement that has n− k elements. The
last reason is the best because it directly uses the

meaning of

(
n

k

)
.

Pascal’s triangle. We’ll compute a few of these
binomial coefficients. Then we’ll show the recur-
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rence relation(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,

then display these binomial coefficients in a trian-
gular table usually called Pascal’s triangle.

Blaise Pascal (1623–1662) and Pierre de Fermat
(1601–1665) studied these binomial coefficients in
the context of probability in the 1600s. Their cor-
respondence resulted in some of the first significant
theory of probability and a systematic study of bi-
nomial coefficients. Because of Pascal’s publication
of their results, a particular arrangement of the bi-
nomial coefficients in a triangle is called Pascal’s
triangle. If you prefer, you can call it the arith-
metic triangle. It was known in Europe for a cou-
ple of centuries before Pascal, and it was known
much longer in Islamic mathematics, in India, and
in China.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

The numbers along the sides are all 1s, and each
entry in the middle is the sum of the two entries
above it. These are just the binomial coefficients(
n

k

)
arranged in a table. By making it a triangle

rather than a rectangle, you can see the two rela-
tionships(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
and

(
n

k

)
=

(
n

n− k

)
more clearly. Here’s the triangle again, but one less
row of it so it fits on the page.(
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There are lots of interrelations among these en-
tries in Pascal’s triangle, and we may have time to
look at a couple of them. Note that in each row, n
is fixed. Let’s call that the nth row; the top row is
then the 0th row. Note that the numbers in the nth

row sum to 2n.(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n− 1

)
+

(
n

1

)
= 2n

For instance, when n = 5, we have 1+5+10+10+
5 + 1 = 32 = 25. That’s because these binomial
coefficients tell us the number of subsets of various
sizes of a set of n elements. Since there are 2n

subsets in all, they have to add up to 2n.
There are different kinds of proofs you can give

for these identities. You can prove this one using
counting arguments or algebraic arguments.

Counting proof: These binomial coefficients tell us
the number of subsets of various sizes of a set of
n elements. Since there are 2n subsets in all, they
have to add up to 2n.

Algebraic proof: Use the binomial theorem

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

with both x and y set to 1.

Graphic interpretation of binomial coeffi-
cients. It’s interesting to look at a row of bi-
nomial coefficients displayed as bar chart, or his-
togram. Compare these graphs for n = 10 and
n = 20.
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They’re on different scales, and only the center por-
tion of the second graph is shown since the bars
are too short to see outside the range shown. Their
shapes are about the same, and, in the limit, give an
important distribution of probability and statistics
called the normal distribution, sometimes called the
Gauss or Laplace-Gauss distribution, although it
was first mentioned by De Moivre in 1733.

Math 114 Home Page at http://math.clarku.

edu/~djoyce/ma114/
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