Math 114 Discrete Mathematics
Cryptography and the number theory behind it
D Joyce, Spring 2018

Private-key codes. There are two kinds of se-
cret codes, private-key and public-key codes. The
private-key codes are what you would expect them
to be, person X takes a message M and encrypts
it using an encryption function ¢ into a another
message ¢(M) and sends that to person Y. Person
Y receives the encrypted message ¢(M) and knows
the decryption function ¢! and uses it to recon-
struct the original message ¢! (¢(M)) = M. The
encryption functions ¢ and ¢!, also called keys,
are kept private.

The keys ¢ and ¢! often work on sequences of
numbers of some sort or other, usually on integers
in some range 0,1,...,n — 1, and can often be de-
scribed in terms of arithmetic functions. The inte-
gers in that range can be identified with the ring
of integers modulo n, denoted Z/nZ, or more sim-
ply Z,, and the arithmetic is addition, subtraction,
and multiplication modulo n. The message M is a
string of integers modulo n,

M =aias...a;

and its encrypted message ¢(M) is the string of
encrypted integers

d(M) = f(a1)f(az) ... f(ax)

modulo n, and the encryption key is a function f :
Z, — Z,, while the decryption key is its inverse
f1:7,— 17,

An example of this is the shift cipher f : Z, —
Z, given by f(a) = a + ¢ (mod n) where ¢ is a
constant, and f~(a) = a — ¢ (mod n).

Private-key codes can be impossible to break.
That is, if you receive the encrypted message ¢(M),

it can be impossible to recover M. But there are
requirements to set up the encryption scheme that
make it impracticable in many cases. Before the
message is sent, persons X and Y have to meet
or otherwise agree on the encryption and decryp-
tion keys ¢ and ¢~!. In many situations that’s
fine. But if X and Y decide at the moment (where
they’re chatting over public communications) that
they want to have a secure remote conversation,
they can’t set up such keys. That’s the situation
over the internet when you want to transfer money,
for instance, or have any other secure conversation.

Public-key codes. In the 1970s the concept of
public-key codes was developed. For a public-key
code, the encryption key ¢ is public (assumed to
be known to everyone), but the decryption key ¢!
remains private. It would work because the private
key could not be determined from the public key.
You would think that if you knew one function, it
wouldn’t be hard to find the inverse function. But
there are a number of these trap-door functions that
don’t seem to be easily inverted.

The most used cryptography system is the RSA
algorithm proposed by Rivest, Shamir, and Adle-
man in their article “On Digital Signatures and
Public Key Cryptosystems,” Communications of
the ACM 21 (1978): 120-126. The RSA algorithm
is based on exponentiation modulo n. The encod-
ing and decoding algorithms are actually functions
Z, — 7Z,. That means that the message M has
to start out as a string of elements ajas ... ax, each
in Z,,. A real message actually needs a preliminary
coding to convert it into a string of numbers mod-
ulo n.

The theorem that ensures that RSA will work
is Euler’s theorem, although it can be verified by
the Chinese remainder theorem. What is needed is
Euler’s theorem in the case that n is the product
of two distinct primes, n = pq. In that case Euler’s
theorem says that whenever a is relatively prime to
n, then

aP~ VY = 1 (mod n).

Here are the steps in creating the two keys for



the encoding and decoding functions for the RSA
system.

1. Select two large prime numbers p and ¢, and
let n be their product pq.

2. Select a number e relatively prime to

(p—1)(¢—1).

(This number e can be pretty small, typically
e=3ore=>5.)

3. Compute
d=e" (mod (p—1)(q—1)),
that is, solve the congruence
ex =1 (mod (p—1)(¢ — 1)),

and call the solution d. Solving that linear con-
gruence will involve the Euclidean algorithm.

4. The encoding algorithm is the function Z, —
Z,, which converts the original message a into
the coded message a® (mod n). Make public
this encoding algorithm, that is, make public
n and e.

5. The decoding algorithm is the function Z, —
Z, which converts an coded message b back
into the original message b (mod n). Keep
private this decoding algorithm, that is, don’t
tell anyone d, and don’t tell anyone p or ¢ ei-
ther, because then d could be determined.

Why does this work as a public-key code?
What’s publicized is n and e. What’s needed to
break the code is to find d. It appears that there’s
no other way to find d other than to factor n into
its two prime factors. There is, however, no known
efficient way to factor large numbers like n.

Why is the decoding algorithm actually inverse
to the encoding algorithm? Let’s check that start-
ing with a message letter a, then encoding it, then

decoding it, returns the original message a. That
is, we need to verify the congruence

(a®)? = a (mod n).

We'll do that in two cases. First, when a is rela-
tively prime to n (which is the case for nearly all a).
In that case, we can use Euler’s theorem modulo n.
We'll also use the fact that

ed =1 (mod (p—1)(q — 1)),

that is, that ed = 1 + c¢(n) for some number c.
Then, modulo n we have
(ae)d = aed
o)
a (a®™)e

al®=a (mod n)

That takes care of the case that (a,n) = 1.
Suppose now that a is not relatively prime to n.
If a = 0 (mod n), then clearly, (a®)? = a (mod n).
Otherwise a is divisible by exactly one of the two
primes p and ¢q. Let’s say p divides it. Of course,
modulo p we have (a°)? = 0 = a (mod p). Now,
since a is relatively prime to ¢, we can apply Fer-
mat’s little theorem modulo ¢ (which is which what
Euler’s theorem generalizes). Then we have

(ae)d = aed
= gltele—D(e-1)

= a (aq—l)c(p—l)

= a1V = ¢ (mod g)

Now, since (a®)? = a both modulo p and modulo g,
therefore the congruence holds modulo their prod-
uct n = pq.

That finishes the proof that the decoding func-
tion actually is inverse to the encoding function.

Math 114 Home Page at http://math.clarku.
edu/~djoyce/malld/


http://math.clarku.edu/~djoyce/ma114/
http://math.clarku.edu/~djoyce/ma114/
http://math.clarku.edu/~djoyce/ma114/

