Quiz 2

Math 114 Discrete Mathematics

D Joyce, Mar 2018
Scale. $9-10 \mathrm{~A}, 7-8 \mathrm{~B}, 4-6 \mathrm{C}$. Median 8.5.

1. [5] About primes, GCDs, and LCMs. (Show a little bit of work on each part so I know you're not just guessing.)
a. [2] What is the prime factorization of 9100 ?

9100 is 91 times 100 . 100 has the prime factorization $2^{2} \cdot 5^{2}$, and 91 has the prime factorization $7 \cdot 13$. So 9100 has the prime factorization $2^{2} \cdot 5^{2} \cdot 7 \cdot 13$.
b. [1.5] What is the greatest common divisor of 32 and 100 ?

Since 32 has the prime factorization $32=2^{5}$ while 100 has the prime factorization $2^{2} \cdot 5^{2}$, therefore their GCDis $2^{2}=4$.
c. [1.5] What is the least common multiple of 32 and 100 ?

Since 32 has the prime factorization $32=2^{5}$ while 100 has the prime factorization $2^{2} \cdot 5^{2}$, therefore their LCMis $2^{5} 5^{2}=800$. You can also find it as LCM $=\frac{32 \cdot 100}{4}$.
2. [3] List the following functions in increasing order of growth so that the slowest growing function comes first, and the fastest growing function last.

$$
\begin{aligned}
& x, \quad 2^{x}, \quad \log x, \quad x^{2}, \quad x(\log x)^{2}, \quad x^{x}, \quad \log (\log x) \\
& \log (\log x) \prec \log x \prec x \prec x(\log x)^{2} \prec x^{2} \prec 2^{x} \prec x^{x}
\end{aligned}
$$

3. [2] Find the smallest value of n so that $\left(4 x^{2}+3 x+1\right)^{3}$ is $\mathcal{O}\left(x^{n}\right)$. Explain how you found n in a sentence or two. (You don't have to prove it or find C or k.)

Since $4 x^{2}+3 x+1$ is $\mathcal{O}\left(x^{2}\right)$, its cube is $\mathcal{O}\left(x^{6}\right)$.

