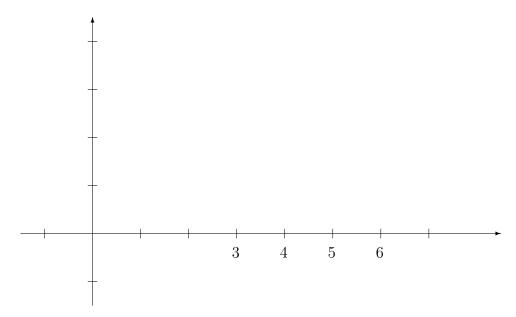
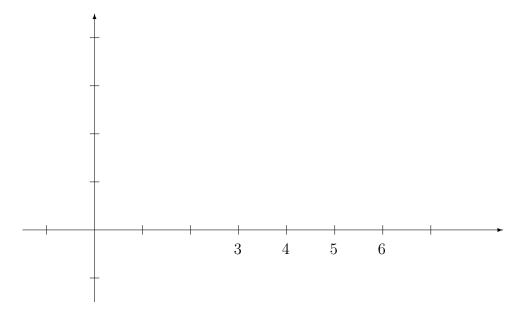
Name:	
Mailbox number:_	

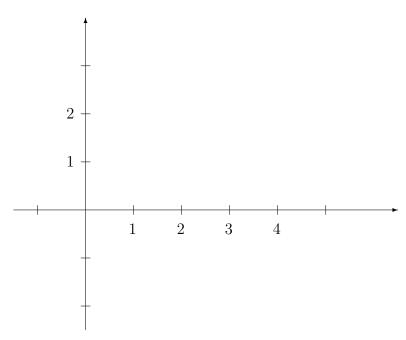

Math 120 Calculus I First Test September 2013

You may use a calculator. Leave your answers as expressions such as $e^2\sqrt{\frac{\sin^2(\pi/6)}{1+\ln 10}}$ if you like. Show all your work for credit. Points for each problem are in square brackets.

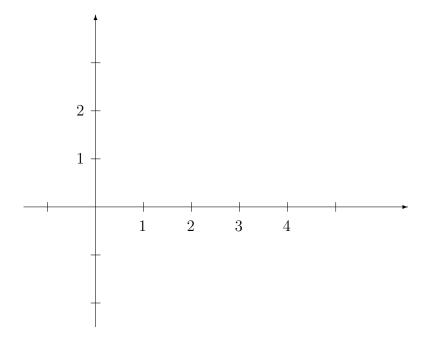

- 1. [12] On limits of average rates of change. Let $f(x) = 5x^2 + 4$.
- **a.** [4] Write down an expression that gives the average rate of change of this function over the interval between x and x + h, and simplify the expression.

b. [8] Compute the limit as $h \to 0$ of that average rate of change.

- 2. [10; 5 points each] On the intutitive concept of limit and continuity.
 - **a.** [5] Sketch the graph y = f(x) of a function for which $\lim_{x\to 3} f(x)$ does not exist.



b. [5] Sketch the graph y = f(x) of a function defined everywhere, the limit $\lim_{x\to 3} f(x)$ does exist, but f is not continuous at x=3.



- **3.** [10; 5 points each property] On asymptotes.
 - **a.** Sketch the graph of a function f such that

$$\lim_{x \to 2^{-}} f(x) = 0$$
 and $\lim_{x \to 2^{+}} f(x) = -\infty$.

b. Sketch the graph of a function f such that $\lim_{x\to-\infty} f(x) = 1$.

4. [28; 7 points each part] Evaluate the following limits. If a limit diverges to $\pm \infty$ it is enough to say that it doesn't exist.

a.
$$\lim_{x \to 1} \frac{x^2 - 4x + 4}{x^2 - x - 2}$$

b.
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 - x - 2}$$

c.
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{9x^3 + x}$$

$$\mathbf{d.} \lim_{x \to 0} \frac{5x}{8\sin x}.$$

5. [15] On the formal definition of limit.

Consider the limit $\lim_{x\to 3}(9-2x)$ which, of course, has the value 3. Since it has the value 3, that means that for each $\epsilon>0$, there exists some $\delta>0$, such that for all x, if $0<|x-3|<\delta$, then $|(9-2x)-3|<\epsilon$.

Let $\epsilon = \frac{1}{3}$. Find a value of δ that works for this ϵ . (Show your work.)

6. [10] Suppose that θ is an angle between $\pi/2$ and π , and that $\sin \theta = \frac{1}{2}\sqrt{2}$. Determine the value of $\cos \theta$.

7. [15; 5 points each part] Suppose that $\lim_{x\to\pi/2} f(x) = 4$ and $\lim_{x\to\pi/2} g(x) = 5$. Evaluate each of the following limits, or explain why it doesn't exist

a.
$$\lim_{x \to \pi/2} \frac{f(x) + g(x)}{f(x) - g(x)}$$

b.
$$\lim_{x \to \pi/2} \frac{x}{g(x) - f(x) - \sin x}$$

c.
$$\lim_{x \to \pi/2} \sqrt{(g(x))^2 + (f(x))^2}$$

#1.[12]	
#2.[10]	
#3.[10]	
#4.[28]	
#5.[15]	
#6.[10]	
#7.[15]	
Total	