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For the most part we’ve looked at positive se-
ries, those series with positive terms. We’ve also
considered geometric series with negative ratios r.
For those geometric series, the signs of the terms
alternate between positive and negative.

We’ll consider now series that have both positive
and negative terms. Many of the most useful ones
are alternating series whose terms have alternating
signs.

We can’t use most of the tests for convergence
we’ve considered already since they’re for positive
terms. The only one that still applies is the Term
Test which says that if the terms of a series don’t
approach 0, then the series diverges, that is to say,
for a series to converge, its terms must approach 0.

Absolutely convergent series. Some series
have terms that are so close to zero that it doesn’t
matter whether you add or subtract them, the se-
ries will converge to something no matter what.
These are called absolutely convergent series.

Theorem 1. Given a series
∑

an, if the series of
absolute values of its terms converges, that is, if∑
|an| converges, then so does the original series.

When that’s the case, we say the original series
absolutely converges

Proof. Suppose
∑
|an| converges. We’ll treat the

series
∑

an as a sum of a positive series
∑

bn and
a negative series

∑
cn. Here’s how. If a term an is

positive, let bn = an and cn = 0, but if an is nega-
tive, then let bn = 0 and cn = an. Then an = bn+cn.
Now bn ≤ |an|, so the series

∑
|an| dominates the

series
∑

bn, so by the comparison test
∑

bn also
converges. Likewise

∑
|an| dominates

∑
(−cn), so

∑
(−cn) converges, and so does

∑
cn. Since

∑
an

is the sum of two convergent series, it, too, con-
verges. q.e.d.

For example, the series
∑ 1

n2
converges, so the

alternating series
∑ (−1)n

n2
absolutely converges.

For another example, the series
∑ sinn

n2
abso-

lutely converges. Why? Because the series of

absolute values of its terms,
∑ | sinn|

n2
converges

because it’s dominated by the convergent series∑ 1

n2
. Note that

∑ sinn

n2
is not an alternating

series, but some of its terms are positive and some
are negative.

Conditionally convergent series. There are
some series that converge, but aren’t absolutely
convergent. We’ll call them conditionally conver-
gent series. We’ll see that an example of this is the
alternating harmonic series

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+ 1

3
− 1

4
+ · · · .

It’s not absolutely convergent since the series of the
absolute values of its terms is the harmonic series
which we know diverges. In the next paragraph,
we’ll have a test, the Alternating Series Test, which
implies that this alternating harmonic series con-
verges. In fact, the sum of this series is ln 2, but we
won’t show that until we look at power series.

When you have a conditionally convergent se-
ries, Riemann’s theorem says you can rearrange it’s
terms so that it converges to a different number, in
fact, to any different number. We won’t prove Rie-
mann’s theorem in this course, but in a moment
we’ll see how you can rearrange the terms of the
alternating harmonic series to get it to sum to a
different number than ln 2. Absolutely convergent
series don’t behave like that; no matter how you
rearrange the terms of an absolutely convergent se-
ries, it always converges to the same number.
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See how this compuatation involves rearranging
the terms of the alternating harmonic series.

ln 2 = 1− 1
2

+ 1
3
− 1

4
+ 1

5
− 1

6
+ 1

7
− 1

8
+ · · ·

= 1− 1
2
− 1

4
+ 1

3
− 1

6
− 1

8
+ 1

5
− 1

10
− · · ·

= (1− 1
2
)− 1

4
+ (1

3
− 1

6
)− 1

8
+ (1

5
− 1

10
)− · · ·

= 1
2
− 1

4
+ 1

6
− 1

8
+ 1

10
− · · ·

= 1
2
(1− 1

2
+ 1

3
− 1

4
+ 1

5
− · · · )

= 1
2

ln 2

Which is absurd since 0 6= ln 2.

Leibniz’ Alternating Series Test. This is a
test which we’ll use to show lots of alternating series
converge.

Theorem 2 (Leibniz). If the absolute values of the
terms of an alternating series converge monotoni-
cally to 0, then the series converges.

Proof. Let
∞∑
k=0

(−1)kak be an alternating series

where the absolute values of the terms ak form a
sequence that decreases to 0. (It’s actually enough
that the sequence is nonincreasing and its limit is
0.)

The even partial sums S0, S2, S4, . . . form a de-
creasing sequence since S2 = S0 − (a1 − a2) < S0,
S4 = S2 − (a3 − a4) < S2, etc. Likewise, the
odd partial sums S1, S3, S5, . . . form an increas-
ing sequence since S3 = S1 + (a2 − a3) > S1,
S5 = S3 + (a4 − a5) > S3, etc. Note that all the
odd partial sums are less than all the even partial
sums. The sequence of even partial sums is decreas-
ing and bounded below, so it has a limit Se, while
the sequnece of odd partial sums is increasing and
bounded above, so it also has a limit So.

As the difference between the even partial sum
S2n and the previous odd partial sum S2n−1 is a2n,
and both Se and So lie between S2n−1 and S2n,
therefore the difference Se − So is less than S2n.
But S2n → 0. Therefore, Se = So. Thus, that num-
ber is the limit of the sequence of all the partial
sums. Hence, the series converges. q.e.d.

As an example of its use, Leibniz’ alternating se-
ries test implies that the alternating harmonic se-
ries converges.
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