Summary of definitions and theorems for

sequences
Math 122 Calculus III

D Joyce, Fall 2012
This is a summary of the main points we've discussed in class about the infinite sequences. We'll use them soon in our study of series.

Definition 1. An infinite sequence of real numbers is simply a function $\mathbf{N} \rightarrow \infty$, written

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

or $\left\{a_{n}\right\}_{n=1}^{\infty}$.
When we have a particular sequence under consideration, we'll either write it out as a list, such as $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$, or specify a general term as a formula, here it would be $a_{n}=1 / n^{2}$.

Definition 2 (Monotonicity). A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is said to be increasing or strictly increasing if for each $n, a_{n}<a_{n+1}$. It's nondecreasing or weakly increasing if for each $n, a_{n} \leq a_{n+1}$. Decreasing sequences are defined analogously. A sequence that satisfies any of these conditions is said to be monotone.

Definition 3 (Boundedness). A sequence is bounded if it is bounded as a set. More precisely $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded below by B if $B \leq a_{n}$ for all n, and it's bounded above by U if $a_{n} \leq U$ for all n. If it's bounded both below and above, it's said to be bounded.

Definition 4 (Convergence and limits of sequences). A sequence is said to converge to the limit L, if for each $\epsilon>0$, there is some N such that beyond the $N^{\text {th }}$ term, every term is within ϵ of L. When the sequence is $\left\{a_{n}\right\}_{n=1}^{\infty}$, we'll write
$\lim _{n \rightarrow \infty} a_{n}=L$, or more briefly $a_{n} \rightarrow L$. Symbolically, $\xrightarrow{n \rightarrow \infty} \underset{\text { convergence says }}{ }$

$$
\forall \epsilon>0, \exists N, \forall n \geq N,\left|a_{n}-L\right|<\epsilon .
$$

A sequence that doesn't converge is said to diverge.
Note that limits of sequences are called discrete limits since the subscript n only takes integers as values, and the integers are separated from each other, that is, they're discrete.

Theorem 5. A sequence can have at most one limit.

Theorem 6. A nondecreasing sequence bounded above converges to its least upper bound. A nonincreasing sequnce bounded below converges to its greatest lower bound.

Theorem 7. If two sequences have limits, $a_{n} \rightarrow A$ and $b_{n} \rightarrow B$, then their sum $a_{n}+b_{n} \rightarrow A+B$, their difference $a_{n}-b_{n} \rightarrow A-B$, and their product $a_{n} b_{n} \rightarrow A B$. Also, their quotient $a_{n} / b_{n} \rightarrow A / B$ provided $B \neq 0$.

Theorem 8. If $\lim _{x \rightarrow \infty} f(x)=L$, and $a_{n}=f(n)$, then $a_{n} \rightarrow L$, also

Theorem 9. If $a_{n} \rightarrow L$, and if f is a continuous function, then $f\left(a_{n}\right) \rightarrow f(L)$.

Theorem 10 (Pinching theorem). If $a_{n} \leq b_{n} \leq c_{n}$ for all n, and both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then $b_{n} \rightarrow L$, also.

Math 122 Home Page at http://math.clarku.edu/~djoyce/ma122/

