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Unit vectors. A unit vector is a vector whose length is 1. If a unit vector u in the plane
R2 is placed in standard position with its tail at the origin, then it’s head will land on the
unit circle x2 + y2 = 1. Every point on the unit circle (x, y) is of the form (cos θ, sin θ) where
θ is the angle measured from the positive x-axis in the counterclockwise direction.
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Thus, every unit vector in the plane is of the form u = (cos θ, sin θ). We can interpret unit
vectors as being directions, and we can use them in place of angles since they carry the same
information as an angle.

In three dimensions, we also use unit vectors and they will still signify directions. Unit
vectors in R3 correspond to points on the sphere because if u = (u1, u2, u3) is a unit vector,
then u2

1 + u2
2 + u2

3 = 1. Each unit vector in R3 carries more information than just one angle
since, if you want to name a point on a sphere, you need to give two angles, longitude and
latitude.

Now that we have unit vectors, we can treat every vector v as a length and a direction.
The length of v is ‖v‖, of course. And its direction is the unit vector u in the same direction
which can be found by

u =
v

‖v‖
.

The vector v can be reconstituted from its length and direction by multiplying v = ‖v‖u.

The standard bases for R2 and R3. Our coordinatized plane R2 has two standard
directions, the x-direction and the y-direction, and we can encode them as unit vectors.
We’ll denote the unit vector in the x-direction as i so that i = (1, 0), and the unit vector in
the y-direction, as j so that j = (0, 1).

-
i=(1,0)

6j=(0,1)
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Every vector v = (x, y) can be uniquely written as a linear combination of these two
standard unit vectors.

v = (x, y) = xi + yi

We say that i and j form the standard basis for R2.
Likewise, for space R3, there are three standard unit vectors i = (1, 0, 0), j = (0, 1, 0),

and k = (0, 1, 0) in the standard basis. Each vector v = (x, y, z) ∈ R3 is a unique linear
combination v = xi + yj + zk.

Vectors in dimension n and n-space Rn. So far, we’ve studied vectors in R2, primarily
because we can draw them easily. But everything we’ve said about dimension 2 also holds in
an arbitrary dimension n.

A vector v in n-space Rn can be interpreted as an arrow in Rn with a certain length and
a certain direction. As in the case when n = 2, it can be interpreted as lots of different arrows
with that length and direction. When it’s put in “standard position,” the head of the arrow
is at a point (v1, v2, . . . , vn) and the tail of the arrow is at the origin (0, 0, . . . , 0). Using this
standard position, we can identify the vector v with a point v = (v1, v2, . . . , vn).

The standard basis for Rn. One common notation for the standard basis for n-space Rn

is e1, e2, . . . , en where
e1 = (1, 0, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0)

...
en = (0, 0, 0, . . . , n)

The kth standard basis vector ek in this basis has 0’s in every coordinate except in the kth

coordinate there’s a 1.
Each vector v = (v1, v2, . . . , vn) is a unique linear combination of these standard basis

vectors

v = (v1, v2, . . . , vn) = v1e1 + v2e2 + · · ·+ vnen =
n∑
k=1

vkek.

Vector operations. The primary two vector operations are vector addition and multipli-
cation by scalars. Vector addition, + : Rn×Rn → Rn, is an operation that takes two vectors
v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) in n-space and produces another vector v + w
in n-space. It’s defined coordinatewise by

v + w = (v1, v2, . . . , vn) + (w1, w2, . . . , wn) = (v1 + w1, v2 + w2, . . . , vn + wn).

Scalar multiplication, R×Rn → Rn, takes a scalar c, that is, a real number, and a vector
v in n-space and produces another vector cv in n-space. It’s also defined coordinatewise.

cv = c(v1, v2, . . . , vn) = (cv1, cv2, . . . , cvn)

These two operations enjoy the same properties for n-space as they do for 2-space.
Other operations can be defined from these two, namely, negation −v = (−1)v, and

subtraction v −w = v + (−1)w. They’re also computed coordinatewise and have the usual
properties.
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Norm and dot products are defined for Rn as well, and have the usual properties.

‖v‖ = ‖(v1, v2, . . . , vn)‖ =
√
v2

1 + v2
2 + · · ·+ v2

n =

√√√√ n∑
k=1

v2
k

v ·w = (v1, v2, . . . , vn) · (w1, w2, . . . , wn) = v1w1 + v2w2 + · · ·+ vnwn =
n∑
k=1

vkwk

Coordinates for physical space. Frequently, people interpret physical space as R3. Of
course, we know now that the geometry of physical space is not the same as R3, but close
enough for many practical purposes. In order to place a coordinate system on physical space,
several choices are required. Different choices lead to different coordinate systems.

(a). Choose a location in physical space to call the origin, (0, 0, 0).
(b). Choose a line through the origin to be the x-axis.
(c). Choose a point on the x-axis to be (1, 0, 0). This choice determines the scale of the

coordinate system. The distance between (0, 0, 0) and (1, 0, 0) will be the unit distance.
(d). Choose a line perpendicular to the x-axis to be the y-axis. There are infinitely many

to choose from, but they all lie in a plane perpendicular to the x-axis passing through the
origin.

(e). There are two points on the y-axis at unit distance from the origin. Choose one of
them to be the point (0, 1, 0).

(f). There is one line perpendicular to both the x-axis and the y-axis. Call it the z-axis.
(g). There are two points on this z-axis at unit distance from the origin. Choose one of

them to be the point (0, 0, 1). Depending on which one you choose, the resulting coordinate
system is called a right-handed coordinate system or a left-handed coordinate system for
physical space.

Math 122 Home Page at http://math.clarku.edu/~djoyce/ma122/
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