
Math 126, Number Theory

Final Answers

May 2006

Scale. 85–100 A. 70-84 B. 55 69 C. Median 86.

Problem 1. [20] Carefully prove the following statement.

If x = r/s is a rational solution of the equation

anxn + an−1x
n−1 + · · ·+ a1x + a0 = 0

where all the coefficients an, an−1, . . . , a1, a0 are in-
tegers, and if r and s are relatively prime, then r
divides the constant term a0 while s divides the
leading coefficient an.

Naturally, there are many proofs. Here’s a straightforward
one.
Proof: Let x = r/x be a solution with r and s relatively
prime. Then

an(r/s)n + an−1(r/s)n−1 + · · ·+ a1(r/s) + a0 = 0.

Multiplying each side of the equation by sn, we have

anrn + an−1r
n−1s + · · ·+ a1rs

n−1 + a0s
n = 0.

All but one of the terms contains a factor of r, so, moving
the remaining term to the other side, we can rewrite this
equation as

(anrn−1 + an−1r
n−2s + · · ·+ a1s

n−1)r = −a0s
n.

Since r divides the left hand side of the equation (by the
definition of divisibility), therefore r divides the right hand
side −a0s

n. But r is relatively prime to s, therefore r is
relatively prime to sn. But r divides −a0s

n, hence r divides
−a0, and thus r divides a0.

Likewise, all but one of the terms contains a factor of s,
so we can rewrite the equation as

(an−1r
n−1 + · · ·+ a1rs

n−2 + a0s
n−1)s = −anrn.

Since s divides the left hand side, it also divides −anrn. But
s being relatively prime to r, it is also relatively prime to
rn. Hence s divides −an, and so also divides an. q.e.d.

Problem 2. [24; 6 points each part] The Euclidean algo-
rithm has been essential for us this semester.

a. Choose two of the following numbers, call them m and
n, and show how the Euclidean algorithm is used to find
their greatest common divisor d = (m,n).

2907, 3128, 4807, 9775

Each choice of m and n leads to different greatest common
divisors. Let’s take m = 4807 and n = 3128. Then

4807 = 3128 + 1679
3128 = 1679 + 1449
1679 = 1449 + 230
1449 = 6 · 230 + 69
230 = 3 · 69 + 23
69 = 3 · 23

Therefore, the greatest common divisor d is 23.

b. Use the work you did in part a to show how d is a linear
combination of m and n, that is, solve the linear Diophantine
equation mx + ny = d.

One way to do that is to work the equations in part a
backwards.

23 = 230− 3 · 69
= 230− 3 · (1449− 6 · 230)
= 19 · 230− 3 · 1449
= 19 · (1679− 1449)− 3 · 1449
= 19 · 1679− 22 · 1449
= 19 · 1679− 22 · (3128− 1679)
= 41 · 1679− 22 · 3128
= 41 · (4807− 3128)− 22 · 3128
= 41 · 4807− 63 · 3128

c. Continuing with this example, show how you can use
your results in part b to solve the linear congruence mx ≡
6d (mod n).

That linear congruence is equivalent to the linear Dio-
phantine equation

mx + ny = 6d.
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Since d = 41m − 63n, therefore 6d = 6 · 41m − 6 · 63n =
246m− 378n. Thus, x ≡ 246 (mod n) is a solution.

d. The Euclidean algorithm also is used to find continued
fraction expansions. Find the continued fraction expansion
of m/n, and show your work.

You can find this as a restatement of part a.

4807
3128

= 1 +
1679
3218

= 1 +
1

3218/1679

= 1 +
1

1+
1449
1679

= 1 +
1

1+
1

1679/1449

= 1 +
1

1+
1

1+
230
1449

= 1 +
1

1+
1

1+
1

6+
69
230

= 1 +
1

1+
1

1+
1

6+
1

3+
23
69

= 1 +
1

1+
1

1+
1

6+
1

3+
1
3

Alternatively, you can read the coefficients 1, 1, 6, 3, 3 di-
rectly from the equations in part a.

Problem 3. [18] Consider the system of three congruences

x ≡ 4 (mod 11)
x ≡ 3 (mod 9)
x ≡ 3 (mod 10)

Since the moduli are pairwise relatively prime, the Chinese
remainder theorem says that there is a unique solution to
this system modulo 990, the product of the moduli. Find
that solution and show your work.

There are a couple of ways to do this. One is to take the
first two congruences and replace them by a single congru-
ence modulo 99, then take that congruence along with the
third to get a single congruence modulo 990.

Here’s a different method that uses all three together.
Step 1. For each modulus, find a reciprocal of the product

of the remaining moduli modulo the given modulus. For the
first modulus, 11, that means we need the reciprocal of 90
modulo 11, that is, we need to solve

90y ≡ 1 (mod 11).

That’s the same as 2y ≡ 1 (mod 11), and that can be easily
found by searching to be y ≡ 6 (mod 11). Thus, 6 is the
reciprocal we’re looking for.

For the second modulus, 9, we need the reciprocal of 110
modulo 9. That’s the same as the reciprocal of 2 modulo 9,
which is 5.

For the third modulus, 10, we need the reciprocal of 99
modulo 10. That’s the same as the reciprocal of 9 modulo
10, which is 9.

Step 2. To get x sum three products abc, one for each
congruence, where a is the constant in the congruence, b
is the product of the other moduli, and c is the reciprocal
found in the previous step. That gives us

4 · 90 · 6 + 3 · 110 · 5 + 3 · 99 · 9 = 2160 + 1650 + 2673 = 6483

and then reduce this number modulo the product 990
of all three moduli. That gives a final answer of x ≡
543 (mod 990).

Problem 4. [18] (page 107, exercise 3) Suppose that
(a, n) = 1. Prove that

ab ≡ ac (mod n)

if and only if
b ≡ c (mod ordn(a)).

(You may use the theorems in the text, of course.)
Of course, there are many proofs. The key theorem 3.26

is the one that says

ax ≡ a (mod n) iff x ≡ 1 (mod ordn(a)).

Here’s a proof that uses this theorem in both directions.
Proof ⇒: Let ab ≡ ac (mod n). Suppose first that b ≥ c.
Then the congruence ab − ac ≡ 0 (mod n) can be written
as ac(ab−c − 1) ≡ 0 (mod n). Thus, n|ac(ab−c − 1). But
(a, n) = 1, so (ac, n) = 1, and therefore n|(ab−c − 1). That
says ab−c ≡ 1 (mod n). Therefore, by theorem 3.26, b ≡
c (mod ordn(a)). Thus, we’ve shown that if b ≥ c, then
b ≡ c (mod ordn(a)) as required. But if c ≥ b, the same
argument holds with b and c interchanged in the argument.
Thus, in all cases b ≡ c (mod ordn(a)).
Proof ⇐: Let b ≡ c (mod ordn(a)). Again, first take the
case that b ≥ c. Then b = c+k ordn(a) for some nonnegative
integer k. Therefore, modulo n,

ab ≡ ac+k ordn(a)

≡ ac(aordn(a))k

≡ ac1k

≡ ac

Likewise, if c ≥ b, we can also show ab ≡ ac (mod n). q.e.d.

Problem 5. [20; 10 points each part] Consider the Pell
equation

x2 − 30y2 = 1.

a. Find solution to the equation from the continued frac-
tion expansion of

√
30, which is

√
30 = 5 +

1
2+

1
10+

1
2+

1
10+

1
2+

1
10+

· · · .
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A solution will be found among the rational approxima-
tions determined by the first period of the continued frac-
tion expansion. The first rational approximation is just
5, that is, 5

1 , but when you set x = 5 and y = 1, you
find x2 − 30y2 = −5. The next rational approximation is
5 + 1

2 = 11
2 . Next, when you set x = 11 and y = 2, you find

x2 − 30y2 = 112 − 30 · 22 = 1, and so (x, y) = (11, 2) is the
desired solution.

b. Once one solution to a Pell equation is found, you can
find infinitely many more. Using your solution in part a,
find two more solutions.

We have a recurrence relation for solutions to Pell equa-
tions, namely, if (a, b) is one solution to x2 − dy2 = 1, then
more solutions (xi, yi) are recursively defined by

x1 = a

y1 = b

xn+1 = axn + dbyn

yn+1 = bxn + ayn

In our case, a = 11, b = 2, and d = 30, so the next two
solutions are

(x2, y2) = (11x1 + 60y1, 2x1 + 11y1)
= (241, 44)

(x3, y3) = (11x2 + 60y2, 2x2 + 11y2)
= (5291, 966)

The next solution is (x4, y4) = (116161, 21208). Notice
how these solutions give very close approximations to

√
30 =

5.477225570517.

n xn yn xn/yn

1 11 2 5.5
2 241 44 5.4772727272727
3 5291 966 5.4772256728779
4 116161 21208 5.4772255752546
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