Math 126, Number Theory

First Test

22 Feb 2006

Your name: \qquad
You may use one sheet of prepared notes and a calculator for the test. Points for each problem are in square brackets.

Problem 1. On divisors. [18; 6 points each part]
a. Draw the Hasse diagram of the divisors of $496=2^{5} \cdot 31$.
b. What are the values of $d(496)$ and $\sigma(496)$.
c. Is the number 496 a perfect number? Why or why not?

Problem 2. On the Euclidean algorithm. [20; 10 points each part] The Euclidean algorithm shows that the greatest common divisor of 399 and 703 is 19 . Here are the computations.

$$
\begin{aligned}
703-399 & =304 \\
399-304 & =95 \\
304-3 \cdot 95 & =19 \\
95-5 \cdot 19 & =0
\end{aligned}
$$

a. Express 19 as a linear combination of 399 and 703.
b. Find all the integral solutions of the linear Diophantine equation $399 x+703 y=19$.

Problem 3. On divisibility. [15] Recall that we say that one positive integer a divides another b, written $a \mid b$, if there exists a third integer c such that $a c=b$. Carefully prove the following theorem. (Note that the theorem has two parts.)
Theorem. Let a, b, and d be positive integers. If $a \mid b$, then $a d \mid b d$. Conversely, if $a d \mid b d$ then $a \mid b$.

Problem 4. True or false. [15; 3 points each part] Just write the word "true" or the word "false". If it's not clear to you which it is, explain; otherwise no explanation is necessary.
-
a. A function f defined for all positive integers is said to be multiplicative if $f(a b)=f(a) f(b)$ whenever $a \mid b$.
\qquad b. If $a \mid c$ and $b \mid c$ then $(a+b) \mid c$.
\qquad c. The principle of mathematical induction says that if (1) a property holds for the number 1, and (2) whenever it holds for a number it holds for the following number, then (3) it holds for all positive integers.
\qquad d. The square root of any prime is an irrational number.
\qquad e. One of the properties of greatest common divisors is that $((a, b), c)=(a,(b, c))$ for all positive integers a, b, and c.

Problem 5. On primes. [15] Here is a table for some of the values of the polynomial $f(n)=n^{2}+n+41$.

n	1	2	3	4	5	6	7	8	9	10	11
$f(n)$	43	47	53	61	71	83	97	113	131	151	173

All the entries in the second row are primes, and it's true that for many more integers $n>11$ that $f(n)$ is prime. Explain why it cannot be that for every $n \geq 1$ that $f(n)$ is prime.

Problem 6. [18; 9 points each part] On modular arithmetic.
a. Fill in the rest of this table of cubes modulo 7.

a	0	1	2	3	4	5	6
a^{3}	0	1				-1	-1

b. Use your results in part a to explain why the sum of two cubes cannot be congruent either 3 or 4 modulo 7 , that is to say, the congruences $x^{3}+y^{3} \equiv 3(\bmod 7)$ and $x^{3}+y^{3} \equiv$ $4(\bmod 7)$ have no solutions.

$\# 1 .[15]$	
$\# 2 .[20]$	
$\# 3 .[18]$	
$\# 4 .[15]$	
$\# 5 .[15]$	
$\# 6 .[18]$	
Total	

