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Problem 1. On divisors. [18; 6 points each part]

a. Draw the Hasse diagram of the divisors of 496 = 24 ·31.
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b. What are the values of d(496) and σ(496).

d(496) is the number of divisors of 496, and you can see in
your diagram in part a that there are are 10 of them. σ(496)
is the sum of those divisors, which you could compute by
adding all the divisors, but there’s an easier way. Since 24

and 31 are relatively prime, therefore σ(496) = σ(24)σ(31) =
31 · 32 = 992.

c. Is the number 496 a perfect number? Why or why not?

A number n is perfect if σ(n) = 2n. Since σ(496) = 992 =
2 · 496, therefore 496 is perfect.

Problem 2. On the Euclidean algorithm. [20; 10 points
each part] The Euclidean algorithm shows that the greatest
common divisor of 399 and 703 is 19. Here are the compu-
tations.

703− 399 = 304
399− 304 = 95

304− 3 · 95 = 19
95− 5 · 19 = 0

a. Express 19 as a linear combination of 399 and 703.

19 = 304− 3 · 95
= 304− 3 · (399− 304)
= 4 · 304− 3 · 199
= 4 · (703− 399)− 3 · 399
= 4 · 703− 7 · 399

b. Find all the integral solutions of the linear Diophantine
equation 399x + 703y = 19.

From part a a particular solution to the equation is

x0 = −7, y0 = 4.

Therefore, the general solution is

x = x0 +
b

d
t, y = y0 +

a

d
t

where a = 399, b = 703, and d = (a, b) = 19, and t is an
arbitrary integer, so we can write the general solution as

x = 4 + 37t, y = 4− 21t.

Problem 3. On divisibility. [15] Recall that we say that
one positive integer a divides another b, written a|b, if there
exists a third integer c such that ac = b. Carefully prove the
following theorem. (Note that the theorem has two parts.)
Theorem. Let a, b, and d be positive integers. If a|b, then
ad|bd. Conversely, if ad|bd then a|b.

There are various ways you can prove this theorem. If
you’re careful, you can prove both the statement and its
converse in the same time by using only if and only if state-
ments. Here’s a proof where each half is proved separately.

Proof =⇒: Suppose that a|b. Then there exists an integer
c such that ac = b. Multiplying both sides of that equation
by d we find that adc = bd. Therefore, ad|bd.

Proof ⇐=: Suppose that ad|bd. Then there exists an in-
teger c such that adc = bd. Since d is positive, we can
divide both sides of that equation by d to find that ac = b.
Therefore a|b. q.e.d.

Problem 4. True or false. [15; 3 points each part]

a. A function f defined for all positive integers is said to
be multiplicative if f(ab) = f(a)f(b) whenever a|b.
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False. The correct statement should have “whenever
(a, b) = 1.” Note that a can divide b but f(ab) 6= f(a)f(b).

b. If a|c and b|c then (a + b)|c.
False. The correct statement should be “if c|a and c|b

then c|(a + b).” Note that 2|6 and 3|6 but 56 | 6.

c. The principle of mathematical induction says that if
(1) a property holds for the number 1, and (2) whenever it
holds for a number it holds for the following number, then
(3) it holds for all positive integers.

True. There are other forms of mathematical induction,
but this is the standard one.

d. The square root of any prime is an irrational number.
True. This is a special case of a general theorem we

proved.

e. One of the properties of greatest common divisors is
that ((a, b), c) = (a, (b, c)) for all positive integers a, b, and
c.

True. We noted this when we looked at the greatest com-
mon divisor of three integers (a, b, c).

Problem 5. On primes. [15] Here is a table for some of the
values of the polynomial f(n) = n2 + n + 41.

n 1 2 3 4 5 6 7 8 9 10 11
f(n) 43 47 53 61 71 83 97 113 131 151 173

All the entries in the second row are primes, and it’s true
that for many more integers n > 11 that f(n) is prime.
Explain why it cannot be that for every n ≥ 1 that f(n) is
prime.

It’s amazing that f(n) is prime for so many values of n,
but it isn’t prime for all of them. It’s fairly easy to see that
when n = 41 that, since 41 divides 412 + 41 + 41, f(41) has
41 as a factor and so is composite. You can also show that
41 is a factor of f(40), but that’s a bit harder to see.

Problem 6. [18; 9 points each part] On modular arithmetic.

a. Fill in the rest of this table of cubes modulo 7.

a 0 1 2 3 4 5 6
a3 0 1 1 −1 1 −1 −1

b. Use your results in part a to explain why the sum
of two cubes cannot be congruent either 3 or 4 modulo 7,
that is to say, the congruences x3 + y3 ≡ 3 (mod 7) and
x3 + y3 ≡ 4 (mod 7) have no solutions.

Each of x3 and y3 is congruent to 0, 1, or −1 modulo 7,
so their sum can range from −2 through 2, but can’t be 3
or 4.
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