Math 126, Number Theory

Second Test, alternate answers

11 Apr 2006

Problem 1. On Pythagorean triples. [18] Recall that a Pythagorean triple (x, y, z) consists of three positive integers such that $x^{2}+y^{2}=z^{2}$. Show that for any Pythagorean triple at least one of x, y, or z is divisible by 5 . [Hint: what are the squares $\bmod 5$?]

The squares modulo 5 are 0,1 , and -1 (which is the same as 4). Thus, each of x^{2}, y^{2} and z^{2} is one of those three. If any one is congruent to 0 modulo 5 , then it's divisible by 5 , so one of x, y, or z is divisible by 5 . That leaves the case where each of x^{2}, y^{2} and z^{2} is congruent to ± 1. But the sum of the first two is the third, and no combination of ± 1 added to ± 1 gives ± 1 modulo 5 . Thus, the remaining case never occurs. Therefore, one of x, y, or z is divisible by 5 . Q.E.D.

Problem 2. Yes/no. [16; 4 points each part]
a. Note that if $(a, 15)=1$, then $a^{4} \equiv 1(\bmod 15)$. Also note that $\phi(15)=8$. Does 15 have any primitive roots?

No. Since $\phi(15)=8$ a primitive root has order 8 , but since $a^{4} \equiv 1(\bmod 15)$, the highest order any totative can be 4 .
b. Fermat's last theorem says that the Diophantine equations $x^{n}+y^{n}=z^{n}$ have no positive solutions for $n>2$. Did Fermat prove this theorem for any value of $n>2$ at all?

Yes, and we studied his proof for $n=4$.
c. If $x y=z^{2}$ and x and y are relatively prime, then does it follow that each of x and y are perfect squares?

Yes, and we repeatedly used this principle to solve higher order Diophantine equations.
d. If $a^{4} \equiv 1(\bmod n)$, then is the order of a modulo n equal to 4 ?

No, it could be 1 or 2 . For instance $(-1)^{4} \equiv 1(\bmod n)$, but it's order is not 4.

Problem 3. [18] Find at least one positive solution of quadratic Diophantine equation

$$
x^{2}+x y-6 y^{2}=21
$$

[Hint: factor the left side of the equation.]
The left side factors as $(x+3 y)(x-2 y)$. We need to find a factoring of 21 so that when we set the first factor to $x+3 y$ and the second factor to $x-2 y$ we get positive integers for
x and y. There are several factorings to consider. One that works is $x+3 y=21$ and $x-2 y=1$. The solution to that pair of equations is $(x, y)=(9,4)$.
Problem 4. [15; 5 points each part] On order and primitive roots.
a. What is the order of 2 modulo 17 ?

We need to raise 2 to higher and higher powers modulo 17 until we reach 1 .

n	1	2	3	4	5	6	7	8
2^{n}	2	4	8	16	15	13	9	1

Thus, $\operatorname{ord}_{17} 2=8$.
b. Is 2 a primitive root modulo 17 ?

No, to be a primitive root, it would have to have an order equal to $\phi(17)=16$.
c. How many primitive roots modulo 17 are there?

There are $\phi(16)=8$ of them.
Problem 5. [15] On Euler's ϕ function.
a. [5] How many positive integers less than 56 are relatively prime to 56 ?

$$
\phi(56)=\phi(8) \phi(7)=4 \cdot 6=24
$$

b. [10] Show that if $n>2$ then $2 \mid \phi(n)$.

Here's one proof. Let the prime decomposition of n be

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}
$$

Then

$$
\phi(n)=\phi\left(p_{1}^{e_{1}}\right) \phi\left(p_{2}^{e_{2}}\right) \ldots \phi\left(p_{k}^{e_{k}}\right) .
$$

If any one of the primes p_{i} is odd, then since

$$
\phi\left(p_{i}\right)=\left(p_{i}-1\right) p_{i}^{e_{i}-},
$$

$\phi\left(p_{i}\right)$ is even, and so $\phi(n)$ is even. Otherwise, there's only one prime $p_{1}=2$, so $n=2^{e}$ is a power of 2 . Now, since $n>2$, therefore $e>1$, and $\phi(n)=\phi\left(2^{e}\right)=2^{e-1}$ is therefore even.
Q.E.D.

Problem 6. [18] Solve the pair of linear congruences

$$
\left\{\begin{array}{l}
4 x+2 y \equiv 3 \quad(\bmod 11) \\
2 x-3 y \equiv 8 \quad(\bmod 11)
\end{array}\right.
$$

Show your work.
Here's one computation that finds the solution. Subtract twice the second congruence from the first to get

$$
8 y \equiv 9(\bmod 11)
$$

Since $8 \cdot 7=56$, therefore 7 acts as the inverse of 8 modulo 11. Multiply that last congruence by 7 to get

$$
y \equiv 8(\bmod 11)
$$

To find x put 8 in for y in one of the original congruences, say the first. Then $4 x+5 \equiv 3(\bmod 11)$ so

$$
4 x \equiv 9(\bmod 11) .
$$

The inverse modulo 11 of 4 is 3 (since $4 \cdot 3=12$, so multiply by 3 to get

$$
x \equiv 5(\bmod 11)
$$

Thus, the solution is $x \equiv 5(\bmod 11)$ and $y=\equiv 8(\bmod 11)$.

