Math 126, Number Theory

Second Test, alternate answers

11 Apr 2006

Problem 1. On Pythagorean triples. [18] Recall that a
Pythagorean triple (x,y, z) consists of three positive integers
such that 22+y? = 22. Show that for any Pythagorean triple
at least one of x, y, or z is divisible by 5. [Hint: what are
the squares mod 57]

The squares modulo 5 are 0, 1, and —1 (which is the same
as 4). Thus, each of 22, y? and 22 is one of those three. If
any one is congruent to 0 modulo 5, then it’s divisible by 5,
so one of z, y, or z is divisible by 5. That leaves the case
where each of 22, y? and 22 is congruent to 1. But the
sum of the first two is the third, and no combination of +1
added to £1 gives £1 modulo 5. Thus, the remaining case
never occurs. Therefore, one of x, y, or z is divisible by 5.
Q.E.D.

Problem 2. Yes/no. [16; 4 points each part]

a. Note that if (a,15) = 1, then a* = 1 (mod 15). Also note
that ¢(15) = 8. Does 15 have any primitive roots?

No. Since ¢(15) = 8 a primitive root has order 8, but
since a* = 1 (mod 15), the highest order any totative can
be 4.

b. Fermat’s last theorem says that the Diophantine equa-
tions " 4+ y™ = 2™ have no positive solutions for n > 2. Did
Fermat prove this theorem for any value of n > 2 at all?

Yes, and we studied his proof for n = 4.

c. If zy = 22 and x and y are relatively prime, then does it
follow that each of x and y are perfect squares?

Yes, and we repeatedly used this principle to solve higher
order Diophantine equations.

d. If a* = 1 (mod n), then is the order of a modulo n equal
to 47

No, it could be 1 or 2. For instance (—1)* = 1 (mod n),
but it’s order is not 4.

Problem 3. [18] Find at least one positive solution of
quadratic Diophantine equation

z? + zy — 6y% = 21.

[Hint: factor the left side of the equation.]

The left side factors as (z+3y)(x —2y). We need to find a
factoring of 21 so that when we set the first factor to x + 3y
and the second factor to  — 2y we get positive integers for

x and y. There are several factorings to consider. One that
works is z + 3y = 21 and « — 2y = 1. The solution to that
pair of equations is (z,y) = (9,4).
Problem 4. [15; 5 points each part] On order and primitive
roots.

a. What is the order of 2 modulo 177

We need to raise 2 to higher and higher powers modulo
17 until we reach 1.

n|l 2 3 4 5 6 7 8
2712 4 8 16 15 13 9 1

16 15 1

Thus, OI‘d17 2=28.
b. Is 2 a primitive root modulo 177

No, to be a primitive root, it would have to have an order
equal to ¢(17) = 16.

c. How many primitive roots modulo 17 are there?
There are ¢(16) = 8 of them.

Problem 5. [15] On Euler’s ¢ function.

a. [5] How many positive integers less than 56 are rela-
tively prime to 567

6(56) = H(8)6(T) = 4-6 = 24
b. [10] Show that if n > 2 then 2|¢(n).

Here’s one proof. Let the prime decomposition of n be
n=pips? ... .ok
Then
o(n) = o(p1)d(p3’) - - . S(Pi*).

If any one of the primes p; is odd, then since

d(pi) = (pi — )pi'~,

¢(p;) is even, and so ¢(n) is even. Otherwise, there’s only
one prime p; = 2, so n = 2¢ is a power of 2. Now, since
n > 2, therefore e > 1, and ¢(n) = ¢(2¢) = 27! is therefore
evern. Q.E.D.

Problem 6. [18] Solve the pair of linear congruences

dr + 2y= 3
20 —

Jy= 8

(mod 11)
(mod 11)



Show your work.

Here’s one computation that finds the solution. Subtract
twice the second congruence from the first to get

8y =9 (mod 11).

Since 8 - 7 = 56, therefore 7 acts as the inverse of 8 modulo
11. Multiply that last congruence by 7 to get

y = 8 (mod 11).

To find = put 8 in for y in one of the original congruences,
say the first. Then 4z + 5 = 3 (mod 11) so

4z =9 (mod 11).

The inverse modulo 11 of 4 is 3 (since 4 -3 = 12, so multiply
by 3 to get
x =5 (mod 11).

Thus, the solution is z =5 (mod 11) and y == 8 (mod 11).



