Math 126, Number Theory

Sample questions for the second test
April 2006

The test will cover sections 3.4, 3.5, 3.7, and chapter 5 . You may bring one sheet of prepared notes for the test. Calculators are optional; you may bring one if you like.

Proofs. There will be a couple short proofs on the test.

1. Show that the number $341=11 \cdot 31$ is a pseudoprime. Recall that the definition that we're using for pseudoprime is that n is a pseudoprime if $2^{n} \equiv 2(\bmod n)$. (Hints: show that 2^{341} is congruent 2 both modulo 11 and modulo 31 , and explain why that implies $\left.2^{341} \equiv 2(\bmod 3) 41.\right)$
2. Show that the Diophantine equation $x^{2}-3 y^{2}=2$ has no solutions. (Hint: modulo 3.)
3. Show that if $n>2$ then $2 \mid \phi(n)$.

Computations. There will be a couple of computational problems on the test.
4. The prime factorization of 105875 is $5^{3} \cdot 7 \cdot 11^{2}$. Compute $\phi(105875)$. You may leave your answer as an arithmetical expression or you may evaluate it as a number.
5. Determine how many primitive roots there are modulo 101. (Note 101 is prime.)
6. Find all solutions in positive integers to $x^{2}+12=y^{4}$.

True/False questions. There will be some of these on the test. Here's a sample of true/false questions.
7. 2 is a primitive root modulo 7 since $2^{6} \equiv 1(\bmod 7)$.
8. The equation $x^{2}-17 y^{2}=3$ is an example of a Pell equation (also called a Fermat/Pell equation).
9. The number 4926834923 is not the sum of two squares since any square modulo 4 is congruent to 0 or 1.

Short answers. The rest of the test will consist of questions that you can answer in a sentence or two.
10. We've worked out the solutions to several higher-degree Diophantine equations by rewriting them in a form like $x^{n}=y z$ where n was 2 or 3 . We then somehow took care of the cases where y and z weren't relatively prime, and that left us with the case where y and z are relatively prime. Explain why the case were y and z are relatively prime is easily solved.
11. Explain why the solutions to the Diophantine equation $x^{2}+y^{2}=z^{2}$ are geometrically significant.
12. Describe Fermat's method of descent.

