Math 126 Number Theory

Prof. D. Joyce, Clark University

20 Jan 2006

Due Wednesday. From page 14, Misc. exercises: 1, 2, 3, 4.

Last meeting. Introduction to the course including a brief survey of number theory. We also talked about prime numbers, divisibility of numbers, and Pythagorean triples.
Definition. An integer m divides an integer n, written $m \mid n$, if there exists an integer k such that $m k=n$. When m does not divide n, we denote that as $m \nmid n$.

Definition. An integer p greater than 1 is said to be prime if it's only positive divisors are 1 and p, otherwise it is said to be composite.

We looked at this definition Euclid's Elements. Euclid of Alexandria lived about 300 B.C.E.

We noted that in order to determine whether a number n was prime, it was enough to see if any prime p less than or equal to \sqrt{n} divides n. If not, then n is prime. But we didn't find the reason why that's enough.
Definition. A Pythagorean triple $x: y: z$ of three positive integers x, y, and z, satisfies the equation $x^{2}+y^{2}=z^{2}$.

These were also mentioned in the Elements. Equations like that where the solutions are required to be integers or rational numbers are called Diophantine equations in honor of Diophantus of Alexandra (about 500 to 600 years after Euclid) who studied them.
We looked at a couple of them, namely $3: 4: 5$ and $5: 12: 13$, noted that a multiple $n x: n y: n z$ of a Pythagorean triple was another Pythagorean triple, and discovered another one with the help of
a little algebra. We'll look at Pythagorean triples in more detail later in the course.

We talked about a couple of things Fermat (1601-1665) did. One was his claim that all numbers of the form $F_{n}=2^{2^{n}}+1$ were prime. He knew that this was true for $n=0,1,2,3$, and 4 , but it turns out that it's not true for $n=5$.

Fermat also wrote in his book of Diophantus that he had a proof that there were no positive integers x, y, and z that satisfied any equation $x^{n}+y^{n}=z^{n}$ for any $n \geq 3$. That was finally proved by Andrew Wiles about ten years ago.

Today. We'll look at a couple more things in chapter 1 , and we may start a discussion of even and odd numbers.

